
Visual Studio Magazine Online

Classic VB Corner

Monitoring System Power Status
With the use of portable devices on the rise, you may find a need to monitor how
much life is in the system your application finds itself running on.

January 5, 2010 · by Karl E. Peterson

Portable devices are becoming increasingly common. And through great strides have
been made in prolonging battery life, no portable system can stay up forever as we so
commonly assume when producing apps for the desktop. If you have a need to be on
top of this situation, Windows is willing to provide a steady stream of notifications on
power status. You only have to listen.

Windows has always been willing to tell you about itself when you ask, and this case is
certainly no different. You can use the GetSystemPowerStatus API function to
determine most of the relevant power settings at a glance. This function returns a
SYSTEM_POWER_STATUS structure that tells you whether you're running on
electricity (AC) or battery (DC).

You'll also discover what the general battery state is -- high charge, low charge,
critically low charge or charging. And if the system is capable of calculating it, you'll
get an estimate of the maximum possible lifetime for this battery, as well as how
many minutes of remaining uptime the battery has under the current power scheme.
These last numbers are definitely estimates, as anyone who's waved a cursor over the
battery icon in the tray can attest.

But asking for these statistics isn't something you should have to make allowance for
in a dynamic system. Recently, I showed you how to subclass ThunderMain, the
hidden top-level window that Classic VB provides to every application. In addition to
the broad range of general purpose notifications Windows supplies top-level windows,
there is also an array of power related notifications that stream through any system
that runs on DC.

After hooking into the ThunderMain message stream, your windowproc is capable of
raising events for a number of useful system power alerts by watching for
WM_POWERBROADCAST messages, and branching based on the wParam argument:

' System notification events.
Public Event PowerBatteryLow()
Public Event PowerResume()
Public Event PowerResumeAutomatic()
Public Event PowerResumeCritical()
Public Event PowerStatusChange()
Public Event PowerSuspend()
Public Event PowerSuspendQuery(Cancel As Boolean)
Public Event PowerSuspendQueryFailed()

http://visualstudiomagazine.com/articles/2010/01/05/monitoring-system-power-status.aspx

http://visualstudiomagazine.com/
http://msdn.microsoft.com/en-us/library/aa372693%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa373232%28VS.85%29.aspx
http://visualstudiomagazine.com/articles/2009/12/17/listening-to-thundermain.aspx
http://msdn.microsoft.com/en-us/library/aa373232%28VS.85%29.aspx

Private Function IHookXP_Message(ByVal hWnd As Long, _
 ByVal uiMsg As Long, ByVal wParam As Long, _
 ByVal lParam As Long, ByVal dwRefData As Long) As Long

 Dim Cancel As Boolean
 Dim EatIt As Boolean
 Dim nRet As Long
 Dim msg As String

 ' Special processing for messages we care about.
 Select Case uiMsg
 Case WM_POWERBROADCAST
 ' An application should return TRUE if it processes this
 ' message.
 EatIt = True
 nRet = 1& ' Default return value.

 Select Case wParam
 Case PBT_APMBATTERYLOW
 ' Notify applications that battery power is low.
 RaiseEvent PowerBatteryLow

 Case PBT_APMRESUMESUSPEND
 ' Notifies applications that the system has resumed
 ' operation after being suspended.
 RaiseEvent PowerResume

 Case PBT_APMRESUMEAUTOMATIC
 ' Notifies applications that the computer has woken
 ' up automatically to handle an event. Applications
 ' will not generally respond unless they handle the
 ' event, because the user is not present.
 RaiseEvent PowerResumeAutomatic

 Case PBT_APMRESUMECRITICAL
 ' Notifies applications that the system has resumed
 ' operation. This event can indicate that some or
 ' all applications did not receive a PBT_APMSUSPEND
 ' event. For example, this event can be broadcast
 ' after a critical suspension caused by a failing
 ' battery.
 RaiseEvent PowerResumeCritical

 Case PBT_APMPOWERSTATUSCHANGE
 ' Notifies applications of a change in the power
 ' status of the computer, such as a switch from
 ' battery power to A/C. The system also broadcasts
 ' this event when remaining battery power slips
 ' below the threshold specified by the user or if
 ' battery power changes by a specified percentage.
 RaiseEvent PowerStatusChange

 Case PBT_APMSUSPEND
 ' Notifies applications that the computer is about
 ' to enter a suspended state. This event typically
 ' is broadcast when all applications and installed
 ' drivers have returned TRUE to a previous
 ' PBT_APMQUERYSUSPEND event.
 RaiseEvent PowerSuspend

http://visualstudiomagazine.com/articles/2010/01/05/monitoring-system-power-status.aspx

 Case PBT_APMQUERYSUSPEND
 ' Requests permission to suspend the computer. An
 ' application that grants permission should carry
 ' out preparations for the suspension before
 ' returning.
 RaiseEvent PowerSuspendQuery(Cancel)
 If Cancel Then
 IHookXP_Message = BROADCAST_QUERY_DENY
 End If

 End Select
 End Select

 ' Pass back to default message handler.
 If EatIt Then
 IHookXP_Message = nRet
 Else
 IHookXP_Message = HookDefault(hWnd, uiMsg, wParam, lParam)
 End If
End Function

I coded this functionality into a class that I envisioned using globally within an
application. Each object that needed to be alerted to power status could then simply
listen in to the ongoing stream of events. This class also provides a series of methods
that expose the values offered by the GetSystemPowerStatus function. For example:

Public Enum PowerACStatus
 ACOffline = 0
 ACOnline = 1
 ACUnknown = 255
End Enum

Public Function ACLineStatus() As PowerACStatus
 Dim sps As SYSTEM_POWER_STATUS
 If GetSystemPowerStatus(sps) Then
 ACLineStatus = sps.ACLineStatus
 End If
End Function

Public Function BatteryLifePercent() As Long
 Dim sps As SYSTEM_POWER_STATUS
 ' The percentage of full battery charge remaining. This member
 ' can be a value in the range 0 to 100, or 255 if status is
 ' unknown.
 If GetSystemPowerStatus(sps) Then
 BatteryLifePercent = sps.BatteryLifePercent
 End If
End Function

Public Function BatteryLifeTime() As Long
 Dim sps As SYSTEM_POWER_STATUS
 ' The number of seconds of battery life remaining, or –1 if
 ' remaining seconds are unknown.
 If GetSystemPowerStatus(sps) Then
 BatteryLifeTime = sps.BatteryLifeTime
 End If
End Function

http://visualstudiomagazine.com/articles/2010/01/05/monitoring-system-power-status.aspx

http://visualstudiomagazine.com/articles/2010/01/05/monitoring-system-power-status.aspx

Vista (and higher) systems offer even more detailed and responsive notifications,
through the RegisterPowerSettingNotification API, which we'll dig into in the future. As
always the complete code for the project described above is available on my Web site.
Grab the SysInfo sample and play along as we look at all the system settings Windows
willingly provides to all who listen.

About the Author
Karl E. Peterson wrote Q&A, Programming Techniques, and various other columns for
VBPJ and VSM from 1995 onward, until Classic VB columns were dropped entirely in
favor of other languages. Similarly, Karl was a Microsoft BASIC MVP from 1994
through 2005, until such community contributions were no longer deemed valuable.
He is the author of VisualStudioMagazine.com's new Classic VB Corner column. You
can contact him through his Web site if you'd like to suggest future topics for this
column.

1105 Redmond Media Group
Copyright 1996-2010 1105 Media, Inc. View our Privacy Policy.

http://msdn.microsoft.com/en-us/library/aa373196%28VS.85%29.aspx
http://vb.mvps.org/samples/SysInfo/
http://visualstudiomagazine.com/columns/columnist.aspx?columnistsid=64
http://vb.mvps.org/
http://redmondmediagroup.com/
http://redmondmediagroup.com/
http://1105media.com/privacy.aspx

