
Visual Studio Magazine Online

Classic VB Corner

Persisting Environment Variables
ONLINE ONLY
Creating and persisting new environment variables can be surprisingly tricky in
Classic VB. Here's how to avoid a common trap.
August 11, 2009 · by Karl E. Peterson

A reader who was having fun writing console apps, asked me recently how he might
be able to modify environment variables (e-vars) so that subsequent instances of his
apps would see the changes. He pointed out, correctly, that this is pretty easy with
batch (or CMD) files, and wanted to be able to do the same thing with his ClassicVB
console apps.

Well, the long and the short of it is, you can't. At least, not exactly. But you can come
pretty close. It's not all that hard to change e-vars and have them persisted into the
future. To do so, you create new entries under either HKCU\Environment for user-
scoped variables, or HKLM\System\CurrentControlSet\Control\Session
Manager\Environment for machine-scoped (affects all users) variables.

There are any number of Web sites out there that will then tell you that to propagate
these newly set e-vars to the parent process, you simply need to send a
WM_SETTINGCHANGE of "Environment" to HWND_BROADCAST. Sounds pretty
simple, and it certainly must be true given how many times it shows up in a quick
Google search, right?

Not So Fast
It turns out that following this procedure will indeed create and persist new
environment variables. And if the parent process actually gives a rip about
WM_SETTINGCHANGE broadcasts, it may choose to update how it looks at the
environment. The problem is, the most common command-processor out there --
cmd.exe -- doesn't pay any attention to this message. You can create new e-vars in
one command window, then see them if you open a new command window. But they
simply do not show up in the original.

That needed to be said, because the implication is misleading. Even Microsoft's advice
lacks clarity on this point.

And yet, it's still useful to know how to set, clear or modify e-vars, so let's take a
closer look at that. Here's the test app I wrote, to see how this might work:

http://visualstudiomagazine.com/articles/2009/08/18/persisting-environment-variables.aspx

http://visualstudiomagazine.com/
http://support.microsoft.com/kb/104011/en-us
http://support.microsoft.com/kb/104011/en-us

Public Sub Main()
 Dim nResult As Long
 Const lmKey = _
 "System\CurrentControlSet\Control\Session Manager\Environment"
 Const cuKey = "Environment"
 Const lmEvar = "ClassicVB-lm"
 Const cuEvar = "ClassicVB-cu"

 ' Required in all MConsole.bas supported apps!
 Con.Initialize

 ' Check whether to clear or set variables.
 Con.WriteLine "Writing to registry... ", False
 If InStr(1, Command$, "/clear", vbTextCompare) Then
 ' Clear e-vars at the User and Machine levels.
 ' HKLM calls may fail if not running as admin.
 Call RegDeleteValue(HKEY_CURRENT_USER, cuKey, cuEvar)
 Call RegDeleteValue(HKEY_LOCAL_MACHINE, lmKey, lmEvar)
 Else
 ' Set e-vars at the User and Machine levels.
 ' HKLM calls may fail if not running as admin.
 RegSetStringValue HKEY_CURRENT_USER, cuKey, cuEvar, "Rocks!"
 RegSetStringValue HKEY_LOCAL_MACHINE, lmKey, lmEvar, "Rocks!"
 End If

 ' Tell the world what we've done.
 Con.WriteLine "Broadcasting change..."
 Call SendMessageTimeout(HWND_BROADCAST, WM_SETTINGCHANGE, 0&, _
 "Environment", SMTO_ABORTIFHUNG, 5000, nResult)

 ' Demonstrate success, or lack thereof
 Con.WriteLine cuEvar & "=" & Environ$(cuEvar)
 Con.WriteLine lmEvar & "=" & Environ$(lmEvar)

 ' Allow user to see output if launched from Explorer.
 If Con.LaunchMode = conLaunchExplorer Then
 Con.PressAnyKey
 End If
End Sub

This uses what I wrote about in my last column, vbAdvance and my MConsole module,
to create a true console application. I've added the demo to the Console sample on
my site.

If you run that app at the command line, within a single command window, it will
never show (using the Environ$ function) the changes you're making. Nor do
subsequent processes started in the same command window, as they inherit copies of
the original environment block rather than the altered one that cmd.exe didn't bother
to read when notified. But if you were to double-click the EXE successively in Explorer,
the second instance would see the changes made by the first.

This all leads one to conclude that setting e-vars in a console app is really rather
pointless, unless the application is written with the intention of making long-term
settings changes. For example, as part of a setup procedure this can make good
sense. But setup programs are rarely console based, so we may as well have a more

http://visualstudiomagazine.com/articles/2009/08/18/persisting-environment-variables.aspx

http://vb.mvps.org/tools/vbAdvance
http://vb.mvps.org/samples/Console

generic set of routines to make lasting e-var changes. We can write a more generic
routine that looks something like this:

Public Function eVarWrite(ByVal eVar As String, _
 ByVal eVal As String, Optional ByVal HKLM As Boolean = False, _
 Optional ByVal Expandable As Boolean = True) As Boolean

 Dim RootKey As Long
 Dim SubKey As String
 Dim dwType As Long
 Dim nRet As Long
 Dim hKey As Long

 ' Is this user-specific or machine-wide?
 If HKLM Then
 RootKey = HKEY_LOCAL_MACHINE
 SubKey = hklmSubKey
 Else
 RootKey = HKEY_CURRENT_USER
 SubKey = hkcuSubKey
 End If

 ' Allow for variable expansion, by default.
 If Expandable Then
 dwType = REG_EXPAND_SZ
 Else
 dwType = REG_SZ
 End If

 ' Open a key and set a value within it.
 If apiRegOpenKeyEx(RootKey, SubKey, 0&, KEY_ALL_ACCESS, hKey) _
 = ERROR_SUCCESS Then

 ' Attempt to write data - Always a string.
 nRet = apiRegSetValueEx(hKey, eVar, 0&, dwType, _
 ByVal eVal, Len(eVal))
 Call apiRegFlushKey(hKey)
 Call apiRegCloseKey(hKey)
 ' Return result of RegSetValueEx call.
 eVarWrite = (nRet = ERROR_SUCCESS)
 End If
End Function

Public Function eVarAlert() As Long
 ' This can take a few seconds, so it makes sense to have
 ' it in a separate routine and only call it after making
 ' all environment variable changes.
 Call SendMessageTimeout(HWND_BROADCAST, WM_SETTINGCHANGE, 0&, _
 "Environment", SMTO_ABORTIFHUNG, 5000, eVarAlert)
End Function

Variable Expansion
I decided it best to separate the setting of e-vars with the broadcast of that change,
as it routinely takes several seconds for the notification message to be sent. You can
view the complete module, with full declarations, on my Web site.

http://visualstudiomagazine.com/articles/2009/08/18/persisting-environment-variables.aspx

http://vb.mvps.org/samples/raw/MEnvVars.bas.txt

If you've never worked with variable expansion before, it's kind of cool. You can, for
example, set an e-var to a value like "%temp%", and then whenever a program
queries that value it's automatically expanded to whatever value the "temp" e-var
currently holds. That may sound confusing, but here's what it would look like at the
command prompt:

C:\›set test=%temp%

C:\›set test
test=C:\WINDOWS\TEMP

And yet, if you were to go in and look at the HKCU\Environment key, you'd see the
"test" e-var does indeed hold a value of "%temp%". Very useful, for situations where
variables contain sub-values that are themselves variable.

Getting back to the original question, I'm afraid that the best way to truly affect the
parent process, if it's going to be cmd.exe, would be for the ClassicVB app to create a
CMD file that's executed immediately following itself as part of the batch process. In
that case, it's really the parent process that's altering itself, so that will always work.

About the Author
Karl E. Peterson wrote Q&A, Programming Techniques, and various other columns for
VBPJ and VSM from 1995 onward, until Classic VB columns were dropped entirely in
favor of other languages. Similarly, Karl was a Microsoft BASIC MVP from 1994
through 2005, until such community contributions were no longer deemed valuable.
He is the author of VisualStudioMagazine.com's new Classic VB Corner column. You
can contact him through his Web site if you'd like to suggest future topics for this
column.

1105 Redmond Media Group
Copyright 1996-2009 1105 Media, Inc. View our Privacy Policy.

http://visualstudiomagazine.com/articles/2009/08/18/persisting-environment-variables.aspx

http://visualstudiomagazine.com/columns/columnist.aspx?columnistsid=64
http://vb.mvps.org/
http://redmondmediagroup.com/
http://redmondmediagroup.com/
http://1105media.com/privacy.aspx

