
Visual Studio Magazine Online

Classic VB Corner

Determining Process Times
ONLINE ONLY
Here's the least complicated method for determining how long a given process has
been running or how much CPU time it's actually consumed. This technique is used
here to establish how long Windows has been running.
May 5, 2009 · by Karl E. Peterson

In my last column, I showed how to grab a random structure from binary data stored
in the registry. Actually, it wasn't all that random of a choice. I was looking for a way
to determine how long Windows had been running, and it turned out that a timestamp
was stored with each shutdown. Or more properly, with each proper shutdown,
crashes not included. Retrieving the structure was still a useful exercise, though, as
we'll see later.

To truly determine "uptime" for the system, it would be more consistent to find a
metric of when the system came up, rather than when it went down. Windows
provides a GetProcessTimes API, which will tell us when any given process was
created, as well as how much CPU time it's consumed in user and kernel modes. Jeff
Atwood published a nice piece on the difference between user and kernel modes about
a year ago, if you're wondering about that.

To use GetProcessTimes, you simply need a handle to the process of interest, and it
must have PROCESS_QUERY_INFORMATION access rights. Using Process Explorer, a
few good process candidates pop right out. It would appear that smss.exe, csrss.exe
and winlogon.exe are the first three processes to fire up. I chose to focus on
winlogon.exe, as that's the one that will actually facilitate the log-on process, and the
system can't truly be considered "up" unless it's willing to let a user log on, right?

So we know the name of the executable we want to query, and the trick now is
getting a handle to that process. In order to obtain a handle, we need to first
determine the process ID. The CreateToolhelp32Snapshot API will take a snapshot of
all running processes, and we can then just loop through the list looking for a match.
The following routine will accept either a filename or a known process ID, and find the
other by looping through the snapshot. Both values are then stored in module-level
variables for use in other routines:

Private Sub ProcessFind(Optional ByVal ExeFile As String, _
 Optional ByVal PID As Long)
 Dim hSnap As Long
 Dim ProcEntry As PROCESSENTRY32
 Dim Found As Boolean

 ' Clear cached values.
 m_PID = 0
 m_ExeFile = ""

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3108

http://visualstudiomagazine.com/
http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3081
http://msdn.microsoft.com/en-us/library/ms683223%28VS.85%29.aspx
http://www.codinghorror.com/blog/archives/001029.html
http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
http://en.wikipedia.org/wiki/Winlogon
http://msdn.microsoft.com/en-us/library/ms682489%28VS.85%29.aspx

 ' Start enumeration (9x/2000+)
 hSnap = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0&)
 If hSnap Then
 With ProcEntry
 .dwSize = Len(ProcEntry)
 ' Iterate through the processes
 If Process32First(hSnap, ProcEntry) Then
 Do
 If PID Then
 Found = (PID = .th32ProcessID)
 ElseIf Len(ExeFile) Then
 Found = (StrComp(TrimNull(.szExeFile), _
 ExeFile, vbTextCompare) = 0)
 End If
 If Found Then
 m_ExeFile = TrimNull(.szExeFile)
 m_PID = .th32ProcessID
 Exit Do
 End If
 Loop While Process32Next(hSnap, ProcEntry)
 End If
 End With
 End If
End Sub

Now that we have the process ID we're after, calling OpenProcess will give us the
needed handle:

Private Sub ProcessOpen()
 Const opFlags As Long = PROCESS_QUERY_INFORMATION
 If (m_hProcess = 0) And (m_PID <> 0) Then
 m_hProcess = OpenProcess(opFlags, False, m_PID)
 End If
End Sub

I tend to stuff code like this, which operates on a given object, into class modules.
Here again, you'll see I'm using module-level variables to store properties of the
object (process). The test to see whether I already have a process handle is a bit of a
shortcut in that I tend to hold the handle open as long as I'm working with it, or for
the life of the class. At this point, our process class offers cached ExeName, ProcessID
and hProcess properties.

As I mentioned above, GetProcessTimes is plural -- it retrieves four different times
related to the specified process. The following property of my class will report on any
one of them:

Public Enum ProcessTimes
 [_ProcessTimesMin] = 0
 piCreationTime = 0
 piExitTime = 1
 piKernelTime = 2
 piUserTime = 3
 [_ProcessTimesMax] = 3
End Enum

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3108

http://msdn.microsoft.com/en-us/library/ms684320%28VS.85%29.aspx

Public Property Get ProcessTime(ByVal WhichTime As ProcessTimes) _
 As Date
 Dim pt(0 To 3) As FILETIME
 If (WhichTime >= [_ProcessTimesMin]) And _
 (WhichTime <= [_ProcessTimesMax]) Then
 Call ProcessOpen
 If m_hProcess Then
 Call GetProcessTimes(m_hProcess, _
 pt(0), pt(1), pt(2), pt(3))
 If pt(WhichTime).dwHighDateTime <> 0 And _
 pt(WhichTime).dwLowDateTime <> 0 Then
 ProcessTime = FileTimeToDouble(pt(WhichTime), True)
 End If
 Call ProcessClose
 End If
 End If
End Property

The final clean-up is to close the open process handle. The process class has an option
to hold the process open, which is slightly more efficient if you need to query multiple
properties of the process. The force parameter to ProcessClose is used in the class
Terminate event, to ensure no leaked handles.

Private Sub ProcessClose(Optional ByVal Force As Boolean)
 If m_hProcess Then
 If (m_HoldOpen = False) Or (Force = True) Then
 Call CloseHandle(m_hProcess)
 m_hProcess = 0
 End If
 End If
End Sub

 Figure 1. ClassicVB authored Uptime

utility output. Note the uncertainty
over "apparent" downtime, as we're
relying on a proper shutdown for this
bonus information.

So what use is that value for last shutdown we
dug out of the registry? Well, it can be
interesting to look at the difference between
the process time of winlogon and the time of
last shutdown, which roughly equates to
"downtime," thus doubling the information our
new little uptime utility provides. Remember,
though, the last shutdown timestamp is only
valid if the system was shutdown properly.

You can download the fully functional utility
with all the code from this and my last column,
and a bonus version compiled to run at the
console using (redirectable) standard output,
from my Web site.

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3108

http://vb.mvps.org/samples/Uptime

About the Author
Karl E. Peterson wrote Q&A, Programming Techniques, and various other columns for
VBPJ and VSM from 1995 onward, until Classic VB columns were dropped entirely in
favor of other languages. Similarly, Karl was a Microsoft BASIC MVP from 1994
through 2005, until such community contributions were no longer deemed valuable.
He is the author of VisualStudioMagazine.com's new Classic VB Corner column. You
can contact him through his Web site if you'd like to suggest future topics for this
column.

1105 Redmond Media Group
Copyright 1996-2009 1105 Media, Inc. See our Privacy Policy.

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3108

http://visualstudiomagazine.com/columns/columnist.aspx?columnistsid=64
http://vb.mvps.org/
http://redmondmediagroup.com/
http://redmondmediagroup.com/
http://1105media.com/privacy.aspx

