
Visual Studio Magazine Online

Classic VB Corner

Mining the Registry for Structures
ONLINE ONLY
Need to extract binary data from the registry? Here's a quick primer on reading and
interpreting structures stored there.
April 20, 2009 · by Karl E. Peterson

Classic VB has always offered a couple of really crude wrappers for reading and
writing to the Windows registry. They were hobbled from the beginning by being
restricted to a single subkey under the CurrentUser (HKCU) hive. So most folks have
found or written wrappers to read and write string and dword keys. But many of the
published ones don't offer nice, easy, binary operations, so I thought I'd share the
method I use.

I was playing around with reproducing a little utility that determines -- estimates,
really -- how long Windows has been running. One of the methods to do this is to read
the "ShutdownTime" value stored at HKLM\System\CurrentControlSet\Control
\Windows. Well, right away, that rules out using native VB methods, as it's in the
LocalMachine hive. Worse still, from this perspective, it's stored as a FILETIME
structure in binary format. Definitely no native support for that.

The FILETIME structure is simply a convenient way to pack a 64-bit value into
manageable 32-bit chunks, and represents the number of nanoseconds since Jan. 1,
1601 (UTC, of course). You can represent FILETIME in ClassicVB as such:

Public Type FILETIME
 dwLowDateTime As Long
 dwHighDateTime As Long
End Type

So the problem comes down to being able to grab some arbitrary number of bytes
from a binary registry entry, and then stuff them into a predefined structure. The
answer was to write a generic registry reading routine that would return a dynamic
byte array. First the code, then the clues:

Public Function RegGetBinaryValue(ByVal RootKey As Long, _
 ByVal Key As String, ByVal ValueName As String, _
 TheData() As Byte) As Boolean

 Dim nRet As Long
 Dim hKey As Long
 Dim nType As Long
 Dim nBytes As Long
 Dim DWord As Long

 ' Open key

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3081

http://visualstudiomagazine.com/
http://support.microsoft.com/kb/232243
http://msdn.microsoft.com/en-us/library/ms724284%28VS.85%29.aspx

 nRet = apiRegOpenKeyEx(RootKey, Key, 0&, KEY_READ, hKey)
 If nRet = ERROR_SUCCESS Then
 ' If NULL, the default value will be read.
 If ValueName = "*" Then ValueName = vbNullString

 ' Determine how large the buffer needs to be
 nRet = apiRegQueryValueEx(hKey, ValueName, 0&, nType, _
 ByVal 0&, nBytes)
 If nRet = ERROR_SUCCESS Then
 If (nType = REG_BINARY) Then
 ' Resize buffer and request data at this key, ...
 ReDim TheData(0 To nBytes - 1) As Byte
 nRet = apiRegQueryValueEx(hKey, ValueName, 0&, _
 nType, TheData(0), nBytes)
 If nRet = ERROR_SUCCESS Then
 ' ... and return success.
 RegGetBinaryValue = True
 End If
 End If
 End If
 Call apiRegCloseKey(hKey)
 End If
End Function

The registry functions are very well-named. So much so, in fact, that I ended up
recycling some of them as function names in my standard registry wrappers, so I
needed to use aliases in all my declares. You can see the standard I settled on was
preceding the API function names with the "api" prefix, while my own function names
took the more conversational names.

The RegGetBinaryValue function accepts root key (typically HKCU or HKLM), key and
value name parameters to point to what data is to be retrieved. Special handling is
given when the value name of "*" is used -- that returns the default value for the key.
The function also accepts a pointer to a dynamic array, which is resized to fit and filled
with the available data from the requested location.

Calling RegGetBinaryValue can be done in this manner:

Public Function LastShutdown() As Date
 Dim b() As Byte
 Dim ft As FILETIME
 Const HKEY_LOCAL_MACHINE = &H80000002
 Const Key As String = _
 "System\CurrentControlSet\Control\Windows"
 Const Value As String = "ShutdownTime"

 If RegGetBinaryValue(HKEY_LOCAL_MACHINE, Key, Value, b) Then
 If UBound(b) = 7 Then
 Call CopyMemory(ft, b(0), 8&)

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3081

 LastShutdown = FileTimeToDouble(ft, True)
 End If
 End If
End Function

In this case, I'm expecting a specific structure to be stored in the binary value, one
composed of exactly eight bytes. So I pass an empty dynamic array to
RegGetBinaryValue, and then test the size of the array upon successful return. If I
was handed eight bytes, a quick call to CopyMemory slings them over into a FILETIME
structure. That's all there is to it.

What's that FileTimeToDouble call in there, you say? That's a little routine I wrote to
convert API date/time values into more VB-friendly values. It exercises a couple more
APIs to return a value our code can understand intrinsically:

Private Function FileTimeToDouble(ftUTC As FILETIME, _
 Optional ByVal Localize As Boolean = False) As Double
 Dim ft As FILETIME
 Dim st As SYSTEMTIME
 Dim d As Double
 Dim t As Double

 ' Convert to local filetime, if necessary.
 If Localize Then
 Call FileTimeToLocalFileTime(ftUTC, ft)
 Else
 ft = ftUTC
 End If

 ' Convert to system time structure.
 Call FileTimeToSystemTime(ft, st)

 ' Convert to VB-style date (double).
 FileTimeToDouble = DateSerial(st.wYear, st.wMonth, st.wDay) + _
 TimeSerial(st.wHour, st.wMinute, st.wSecond)
End Function

Windows typically stores all time values in UTC, and then converts them to the local
time zone upon demand. So the first task when converting FILETIME structures is
often to pass them to FileTimeToLocalFileTime which does just as its name suggests,
including accounting for daylight-saving time. The next step is to break the encoded
low and high values of the FILETIME structure into a much more readable
SYSTEMTIME structure using the FileTimeToSystemTime API.

SYSTEMTIME structures neatly map into exactly the values we need to provide
DateSerial and TimeSerial, such that we end up with the native data format used by
ClassicVB for dates and times. Yes, a Date variable is simply a Double in drag.

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3081

http://msdn.microsoft.com/en-us/library/ms803004.aspx
http://msdn.microsoft.com/en-us/library/ms724277%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms724950%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms724280%28VS.85%29.aspx

The Uptime sample on my site contains this code, and much more which I'll be
touching on in forthcoming columns. Next, we'll look at why this registry value may
not be the best indicator of system uptime, and what's a better way to estimate that
elusive value.

About the Author
Karl E. Peterson wrote Q&A, Programming Techniques, and various other columns for
VBPJ and VSM from 1995 onward, until Classic VB columns were dropped entirely in
favor of other languages. Similarly, Karl was a Microsoft BASIC MVP from 1994
through 2005, until such community contributions were no longer deemed valuable.
He is the author of VisualStudioMagazine.com's new Classic VB Corner column. You
can contact him through his Web site if you'd like to suggest future topics for this
column.

1105 Redmond Media Group
Copyright 1996-2009 1105 Media, Inc. See our Privacy Policy.

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3081

http://vb.mvps.org/samples/Uptime
http://visualstudiomagazine.com/columns/columnist.aspx?columnistsid=64
http://vb.mvps.org/
http://redmondmediagroup.com/
http://redmondmediagroup.com/
http://1105media.com/privacy.aspx

