
94 FALL 1997, WINDOWS NT ENTERPRISE DEVE

I N T E R M E D I A T E

Q & A

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency and
serves as a member of the Visual Basic
Programmer’s Journal Technical Review
and Editorial Advisory boards. Based in
Vancouver, Washington, he’s also an inde-
pendent programming consultant special-
izing in ActiveX controls. Karl coauthored
Visual Basic 4 How-To from Waite Group
Press and contributes to various journals.
Online, he’s a Microsoft Developer MVP
and a section leader for both VBPJ online
forums. Contact Karl at karl@rtc.wa.gov.

This is your forum for addressing the
intricacies of Visual Basic. Send your ques-
tions, clever tips, and techniques. Visual
Basic Programmer’s Journal will pay $25
for any submission, tip, or question we
print. If your submission includes code,
please send it electronically. Please include
your mailing address with your submission.
Mail submissions to Q&A Columnists, c/o
Fawcette Technical Publications, 209
Hamilton Avenue, Palo Alto, CA, USA, 94301-
2500. CompuServe: 74774,305. Internet:
vbpjedit@fawcette.com.

b y K a r l E . P e t e r s o n

Name the Domain
Click & Retrieve

Source

CODE!

API CALLS FACILITATE NAME QUERIES
Under Windows NT, I need to obtain the machine name and the domain name
from within my application. Which API function(s) should I use to do that?

—Allen Khaligh, Herndon, Virginia

A Networking can cause much grief under VB. Fortunately, the API support in
Windows NT is far superior to that in Windows 95, where the choices are grim
at best. NT exposes a series of around 70 NetApi functions used to query and

control most aspects of networking. However, NT offers nearly all the functions in
Unicode-only versions, which can be frustrating due to VB’s inability to directly pass
Unicode strings to a DLL function.

Two API calls will help: NetWkstaGetInfo and NetWkstaGetUserInfo. I’ve written a
single class module, CNetWksta, to encapsulate both. This class offers a Refresh method,
which calls the two APIs and populates structures, which are exposed through read-only
properties (see Listing 1). The complete CNetWksta class and a sample showing how to
use it are available on the Registered Level of The Development Exchange. Premier Club
members can download a similar class that fully exercises the NetUserGetInfo API, which
obtains all available information for any given user on any server (see the Code Online
box at the end of the column for details).

The first trick to making these calls is avoiding VB’s nasty habit of converting all
passed strings to ANSI on the way out, and reconverting them to Unicode on the way
back. Notice that in the Declares, the “string” parameters such as lpServer are declared
with As Any. The strategy is to maintain Unicode-only strings by holding the data in Byte
arrays, which VB doesn’t attempt to convert. In this example, you want information only
for the local machine, so you can pass a Null pointer rather than specify a remote server.

The next hurdle is that the NetApi functions are pointer-oriented. NetWkstaGetInfo
returns a pointer in the lpBuffer parameter to a structure it creates containing the requested
information (based on the value passed in the Level parameter). To convert this pointer to
a true VB structure, copy it from the location pointed to by lpBuffer. Complicating matters
are a number of structure elements that are themselves pointers to Unicode string data.

My solution is to declare a pair of parallel structures for each API. One structure
contains all Long elements, and the other contains a mixture of Long and String
elements. After a successful call to NetWkstaGetInfo or NetWkstaGetUserInfo, use
RtlMoveMemory (here aliased as CopyMem) to copy the data from the buffer created
by the API into the structure containing all Longs. Finally, populate the mixed structure
by directly assigning Long elements, and calling a special-purpose VB routine to copy
the Unicode string data from memory.

The PointerToStringW function (see Listing 1) accepts a pointer to a Unicode string
as input, and returns that string data as a VB String variable. If the passed pointer is valid
(nonzero), call lstrlenW to determine the length of the string data pointed to. Because
Unicode consists of two bytes per character, multiply this character length by two to
create a Byte array long enough to receive the string data. Call CopyMem again to move
the string data from memory into the Byte array. Because the string data is already
Unicode, you can assign it directly to a VB String variable. Therefore, assign the Byte
array as the return value of PointerToStringW.

Finally, after obtaining all the required data, the buffer created by the API call needs to
be released. Although most API functions require a buffer created ahead of time, which
they then fill, the NetApi functions often create the buffer themselves and return a pointer
to it. In this case, memory might remain allocated long after its need has passed. Therefore,
you must call NetApiBufferFree after copying the buffer’s contents.
LOPMENT Visual Basic Programmer’s Journal http://www.windx.comhttp://www.windx.com

Q & A

I N T E R M E D I A T E
'
' Win32 NetAPIs.
'
Private Declare Function NetWkstaGetInfo Lib _
"Netapi32.dll" (lpServer As Any, _
ByVal Level As Long, lpBuffer As Any) As Long

Private Declare Function NetWkstaUserGetInfo Lib _
"Netapi32.dll" (ByVal reserved As Any, _
ByVal Level As Long, lpBuffer As Any) As Long

Private Declare Function NetApiBufferFree Lib _
"Netapi32.dll" (ByVal lpBuffer As Long) As Long

'
' Data handling APIs
'
Private Declare Sub CopyMem Lib "kernel32" Alias _
"RtlMoveMemory" (pTo As Any, uFrom As Any, _
ByVal lSize As Long)

Private Declare Function lstrlenW Lib "kernel32" _
(ByVal lpString As Long) As Long

Private Declare Function lstrcpyW Lib "kernel32" _
(lpString1 As Byte, ByVal lpString2 As Long) As Long

Private Type WKSTA_INFO_102
wki102_platform_id As Long
wki102_computername As Long
wki102_langroup As Long
wki102_ver_major As Long
wki102_ver_minor As Long
wki102_lanroot As Long
wki102_logged_on_users As Long

End Type

Private Type WkstaInfo102
PlatformId As Long
ComputerName As String
LanGroup As String
VerMajor As Long
VerMinor As Long
LanRoot As String
LoggedOnUsers As Long

End Type

Private Type WKSTA_USER_INFO_1
wkui1_username As Long
wkui1_logon_domain As Long
wkui1_oth_domains As Long
wkui1_logon_server As Long

End Type

Private Type WkstaUserInfo1
UserName As String
LogonDomain As String
OtherDomains As String
LogonServer As String

End Type

Private Const NERR_Success As Long = 0&
'
' Member variables
'
Private m_Wks As WkstaInfo102
Private m_User As WkstaUserInfo1
Private m_IsWinNT As Boolean

' ***
' Public Methods
' ***
Public Sub Refresh()
Dim lpBuffer As Long
Dim nRet As Long
Dim wki As WKSTA_INFO_102
Dim wkui As WKSTA_USER_INFO_1
Visual Basic Programmer’shttp://www.windx.com
'
' These functions only exist in Windows NT!!!
'
If Not m_IsWinNT Then Exit Sub
'
' Obtain workstation information
'
nRet = NetWkstaGetInfo(ByVal 0&, 102&, lpBuffer)
If nRet = NERR_Success Then

'
' Transfer data to VB-friendly structure
'
CopyMem wki, ByVal lpBuffer, Len(wki)
m_Wks.PlatformId = wki.wki102_platform_id
m_Wks.ComputerName = _

PointerToStringW(wki.wki102_computername)
m_Wks.LanGroup = _

PointerToStringW(wki.wki102_langroup)
m_Wks.VerMajor = wki.wki102_ver_major
m_Wks.VerMinor = wki.wki102_ver_minor
m_Wks.LanRoot = _

PointerToStringW(wki.wki102_lanroot)
m_Wks.LoggedOnUsers = wki.wki102_logged_on_users
'
' Clean up
'
If lpBuffer Then

Call NetApiBufferFree(lpBuffer)
End If

End If
'
' Obtain user information for this workstation
'
nRet = NetWkstaUserGetInfo(0&, 1&, lpBuffer)
If nRet = NERR_Success Then

'
' Transfer data to VB-friendly structure
'
CopyMem wkui, ByVal lpBuffer, Len(wkui)
m_User.UserName = _

PointerToStringW(wkui.wkui1_username)
m_User.LogonDomain = _

PointerToStringW(wkui.wkui1_logon_domain)
m_User.OtherDomains = _

PointerToStringW(wkui.wkui1_oth_domains)
m_User.LogonServer = _

PointerToStringW(wkui.wkui1_logon_server)
'
' Clean up
'
If lpBuffer Then

Call NetApiBufferFree(lpBuffer)
End If

End If
End Sub

' ***
' Private Methods
' ***
Private Function PointerToStringW(lpStringW As Long) _
As String
Dim buffer() As Byte
Dim nLen As Long

If lpStringW Then
nLen = lstrlenW(lpStringW) * 2
If nLen Then

ReDim buffer(0 To (nLen - 1)) As Byte
CopyMem buffer(0), ByVal lpStringW, nLen
PointerToStringW = buffer

End If
End If

End Function
Obtain Workstation Information Through Networking APIs. A class module wraps NetWkstaGetInfo and
NetWkstaGetUserInfo to obtain information such as domain and user names. Public read-only property procedures (not

shown) offer elements of the WkstaInfo102 and WkstaUserInfo1 types to your application.

LISTING 1
 Journal WINDOWS NT ENTERPRISE DEVELOPMENT, FALL 1997 95

I N T E R M E D I A T E

Q & A
By the way, to answer your question, the domain name is
somewhat hidden in the WkstaInfo102 structure. It goes by the
name LanGroup with this API.

AVOID INVALID NULL ERROR
What do I do when this code generates the error
“Invalid use of Null”?

txtData(0).Text = MyRS("Topic")

If the field in the Access database contains a Null, I get an
error when trying to assign it to the Text property of a text box.
Should I modify the database, or handle the error in my code?
—Patrick Kelly, received by e-mail

A You’ll love to hear that not only is this incredibly easy
to fix, but also that this problem has bitten nearly
everyone who’s ever worked with Access databases.

Although the problem has been around as long as VB3 has,
there’s a constant parade of folks who’ve never run into it. You
could attack it with lots of nasty code, checking for Nulls in every
field. Or, you could be sneaky and take advantage of what VB
does when you perform operations on Nulls. Simply put, concat-
enate a Null string to the Null, and you end up with a Null string.
Or, simpler still:

txtData(0).Text = MyRS("Topic") & ""

That’s all there is to it.

FIVE, 10, 15, 20 . . .
My program is for the steel-detailing industry
and is used to count bolts. I need to add a feature to

round up all totals to the nearest five. For example, say you
arrive at a total of 471 bolts of a certain size. I need to round this
figure up to 475.
—David Nelms, Angier, North Carolina

A The answer to this lies in two VB functions: one under
appreciated and the other virtually unknown. I’ll look
at the solution first, then pick apart why it works:

Function RoundUpToFives(ByVal n As Long) As Long
RoundUpToFives = ((n \ 5) + Sgn(n Mod 5)) * 5

End Function

Start by doing an integer divide on the original number by five.
This gives you the total number of times that five goes into the
original without any remaining fraction. Then, use the Mod
operator to determine what the remainder would be in such an
integer division. The potential remainder values range from zero
to four when dividing by five. This is where the Sgn function
comes in. Sgn returns –1 for negative numbers, 0 for zero, and 1
for positive numbers. If the original number is evenly divisible by
five, the Mod result is 0, so adding the Sgn of this latter result and
then multiplying by five brings you right back where you started.
However, if there is any remainder, that is your clue that you need
to round up to the next multiple of five. If the Mod result is 1
through 4, adding the Sgn of this value before multiplying by five
bumps up the result to the next multiple of five. Simple in
retrospect, but a bit of a head-scratcher at first glance.

TILING THE BACKGROUND
I’m trying to design forms in VB5 from my Access 97
tables. I have a nifty little background I’d like to use on
96 FALL 1997, WINDOWS NT ENTERPRISE DEVELOPMENT Visual Basic Pr
Public Sub TileBlt(ByVal hWndDest As Long, _
ByVal hBmpSrc As Long)
'
' 32-Bit Tiling BitBlt Function
' Written by Karl E. Peterson, 9/22/96.
' Tiles a bitmap across the client area of
' destination window.
'
' Parameters

' hWndDest: hWnd of destination
' hBmpSrc: hBitmap of source
'

**
'
Dim bmp As BITMAP ' Header info for passed

' bitmap handle
Dim hDCSrc As Long ' Device context for source
Dim hDCDest As Long ' Device context for

' destination
Dim hBmpTmp As Long ' Holding space for temporary

' bitmap
Dim dRect As RECT ' Holds coordinates of

' destination rectangle
Dim Rows As Long ' Number of rows in

' destination
Dim Cols As Long ' Number of columns in

' destination
Dim dX As Long ' CurrentX in destination
Dim dY As Long ' CurrentY in destination
Dim i As Long, j As Long
'
' Get destination rectangle and device context.
'
Call GetClientRect(hWndDest, dRect)
hDCDest = GetDC(hWndDest)
'
' Create source DC and select passed bitmap into it.
'
hDCSrc = CreateCompatibleDC(hDCDest)
hBmpTmp = SelectObject(hDCSrc, hBmpSrc)
'
' Get size information about passed bitmap, and
' Calc number of rows and columns to paint.
'
Call GetObj(hBmpSrc, Len(bmp), bmp)
Rows = dRect.Right \ bmp.bmWidth
Cols = dRect.Bottom \ bmp.bmHeight
'
' Spray out across destination.
'
For i = 0 To Rows

dX = i * bmp.bmWidth
For j = 0 To Cols

dY = j * bmp.bmHeight
Call BitBlt(hDCDest, dX, dY, bmp.bmWidth, _

bmp.bmHeight, hDCSrc, 0, 0, SRCCOPY)
Next j

Next i
'
' and clean up
'
Call SelectObject(hDCSrc, hBmpTmp)
Call DeleteDC(hDCSrc)
Call ReleaseDC(hWndDest, hDCDest)

End Sub
Tile a Bitmap Across the Background. This code
enables users to point to a destination window for

operations such as pasting information from the clipboard. Apply
the same technique in 16-bit VB apps by modifying the API declarations
for that platform. Due to space limitations, the API declarations are
available on the Registered Level of The Development Exchange.

LISTING 2
ogrammer’s Journal http://www.windx.com

Q & A

I N T E R M E D I A T E
all the forms for unity’s sake. However, I can’t seem to get the
image to tile across the entire form. Please don’t tell me I must
make backgrounds the size that I want them and then place them
as pictures for either the form or image. Is there a tiling or
clipping feature that I’m just not seeing in the Properties menu?
—Nick DeVore, received on The Development Exchange BBS

A No, you’re not missing anything. There isn’t any built-
in tiling functionality in VB. That isn’t to say it isn’t
doable, though. Tiling an image across a window re-

quires only that you loop through as many iterations as required
to fully cover the window with your image. VB provides the
PaintPicture method as one way to transfer the image, but I
prefer to go straight to the API and call the BitBlt function. This
opens more possibilities, including building the image in memory
rather than using a stored image.

I wrote a function some time ago for this purpose (see Listing 2).
Notice the only parameters required are the window handle of the
destination and the bitmap handle of the source. Asking for the
bitmap handle rather than the window handle of the source lets you
store the source in a Picture object instead of a Picture control.
Picture objects consume fewer resources and don’t need to be
attached to a form, so they’re preferable when they serve the
intended purpose.

Don’t be put off by the number of API calls used in this routine,
because it’s self-contained. To use it with either VB4 or VB5, pass
the Handle property of any Picture object, including the Picture
property of Picture controls:

Call TileBlt(Me.hWnd, Picture1.Picture.Handle)

TileBlt works by creating a compatible device context in
memory, then selecting the passed bitmap into that device
context. Once the bitmap is selected, call GetObj to retrieve its
critical height and width measurements. Retrieve the destina-
tion dimensions by calling GetClientRect. Having this informa-
tion at hand lets you calculate how many rows and columns you
need to paint, and where each new copy should be placed.

Remember the golden rule when working with GDI objects:
always return things to the state you found them in. Notice the
cleanup code that returns everything to where it was. This
avoids resource leaks (and worse!).
Code Online
You can find all the code published in this issue of VBPJ on The
Development Exchange (DevX) at http://www.windx.com. All the list-
ings and associated files essential to the articles are available for free
to Registered members of DevX, in one ZIP file. This ZIP file is also posted
in the Magazine Library of the VBPJ Forum on CompuServe. DevX
Premier Club members ($20 for six months) can get each article’s
listings in a separate file, as well as additional code and utilities for
selected articles, plus archives of all code ever published in VBPJ and
Microsoft Interactive Developer magazines.

Name the Domain
Locator+ Codes
Listings ZIP file plus a class, CNetWksta, which encapsulates both
NetWkstaGetInfo and NetWkstaGetUserInfo, and a CustomBlt module
containing complete tiling code and declares (free Registered Level):
VBPJEN97

 Listings for this article, plus a class, CNetWksta, which encapsulates
both NetWkstaGetInfo and NetWkstaGetUserInfo; a class, CNetUser,
which fully encapsulates the NetUserGetInfo API by providing all user
information on any server; a CustomBlt module containing complete
tiling code and declares; and a small form that demonstrates calling the
CNetUser class (subscriber Premier Level): QAEN97P

VBPJ ENTERPRISE DEV, FALL ’97 97http://www.windx.com

	Code

