
92 OCTOBER 1997 Visual Basic Programmer’s

I N T E R M E D I A T E

Q & A

Display Text with
Property Settings

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency and
serves as a member of the Visual Basic
Programmer’s Journal Technical Review
and Editorial Advisory boards. Based in
Vancouver, Washington, he’s also an inde-
pendent programming consultant special-
izing in ActiveX controls. Karl coauthored
Visual Basic 4 How-To from Waite Group
Press and contributes to various journals.
Online, he’s a Microsoft Developer MVP
and a section leader for both VBPJ online
forums. Contact Karl at karl@rtc.wa.gov.

This is your forum for addressing the
intricacies of Visual Basic. Send your ques-
tions, clever tips, and techniques. Visual
Basic Programmer’s Journal will pay $25
for any submission, tip, or question we
print. If your submission includes code,
please send it electronically. Please include
your mailing address with your submission.
Mail submissions to Q&A Columnists, c/o
Fawcette Technical Publications, 209
Hamilton Avenue, Palo Alto, CA, USA, 94301-
2500. CompuServe: 74774,305. Internet:
vbpjedit@fawcette.com.

b y K a r l E . P e t e r s o n

Click & Retrieve
Source

CODE!
SEE DESCRIPTIONS WITH VALUES
During my first effort to design an ActiveX control using VB 5.0, I ran into a
small problem. I have an integer-type property on an ActiveX control project

that can be edited through a property page. On the property page, I fill a combo box
with the acceptable set of property values:

cboProperty.AddItem "0 - Descriptive text for 0"
cboProperty.AddItem "1 - Descriptive text for 1"
cboProperty.AddItem "2 - Descriptive text for 2"

When the value is changed through combo box selection, I use the ListIndex of the
combo box to apply the new value to its corresponding property in my control. The
problem is that when I return to the main property sheet to inspect the value
currently set for the property, I see only the Integer value without its corresponding
text. Ideally, I would like to see both. For example, VB’s Alignment property displays
something like this:

0 - Left align
1 - Right align
2 - Center

How can I accomplish this?
—Robert Mayer, Memphis, Tennessee

A
This situation has tripped up a number of folks. The answer isn’t intuitive, but
it is extremely simple to implement. You didn’t show your exact code, so I’ll
use the Alignment example you brought up. To replicate that, you first need

to expose the constants through a Public Enum:

Public Enum AlignmentTypes
[Left Align] = 0
[Right Align] = 1
Center = 2

End Enum

The first two constant names are enclosed in brackets. Using this style allows
spaces to appear in the constant names. The spaces make the property window
appearance more natural, but introduce a problem for users who would like to assign
these constant values directly within their code. As in the Enum, they have to enclose
the constant name within brackets in their code:

UserControl1.Alignment = [Left Align]

You can ease this pain by declaring the Property as the enumerated type.
As your users code for this property, VB5 presents them with a drop-down list
of the potential values they’re allowed to assign. Choosing one of the listed
values automatically encloses it in brackets if it contains a space. There is just
one gotcha—VB won’t validate incoming values to ensure they’re within the range
of the enumerated constants. You must test and act accordingly within the
Property procedure:
 Journal http://www.windx.comhttp://www.windx.com

Q & A

I N T E R M E D I A T E
Public Property Let Alignment_
(ByVal NewVal As AlignmentTypes)
If NewVal = Center Or _

NewVal = [Left Align] Or _
NewVal = [Right Align] Then

' store new value and
' alter behavior to match

Else
' illegal value

End If
End Property

The sharp-eyed amongst you are say-
ing by now, “I could’ve saved a lot of
trouble by using one of VB’s standard
enumerated types.” That’s true. And in
general, it’s an excellent method to save
a lot of keystrokes. In this case, I could
have used AlignmentConstants instead
of AlignmentTypes as the Property type
and VB would have automatically offered
vbCenter, vbLeftJustify, and vbRightJus-
tify as the available options. The Enum
would not have been needed. You can
see how simple that would make offering
a property such as MousePointer, which
has more than a dozen standard choices.
Of course, this was only an example.

ACCESS FIELD DESCRIPTIONS
Microsoft Access 2.0 and 7.0
have a “comments” or “descrip-

tions” section for each field in a database.
When programming in Access, this field
shows up on forms. How can I access this
http://www.windx.com
in VB code? I would like to use the com-
ments for tooltip help, or simply to provide
the users of my database apps with more
information on the field they are entering
data into. Is there any way to do this?
—Kevin Pisarsky, Akron, Ohio

A
Like you, I was initially stumped
by this question. A quick browse
of the Microsoft Knowledge Base

proved discouraging. Article Q109136,
“Basic Cannot Get Description Shown in
Access Table Design View,” seemed to
say this was impossible. However, closer
examination showed this article was writ-
ten for VB3 and Access 1.x. I did a little
snooping around to see what I could un-
cover. My thanks to Joe Maki (a Microsoft
Access MVP) for reminding me, once
again, not to believe everything I read. Joe
offered this snippet to extract all proper-
ties for any given field:

Private Sub Form1_Click()
Dim db As Database
Dim td As TableDef
Dim fld As Field
Dim prp As Property

On Error Resume Next

Set db = OpenDatabase_
("F:\Prog\VB5\Biblio.mdb")

Set td = db.TableDefs("Authors")
Set fld = td.Fields("Author")
Visual Basi
For Each prp In fld.Properties
Debug.Print prp.Name & ": " & _

prp.Value
Next

End Sub

I used the sample Biblio.mdb data-
base, which ships with VB, for the test. To
extract only the Description field, you can
assign it directly:

Text1.ToolTipText = _
td.Fields("Author").Properties_
("Description")

Alternatively, this syntax might be
marginally faster, and is another alterna-
tive if it more closely matches your cod-
ing style:

Text1.ToolTipText = _
td.Fields!Author.Properties!_
Description

This tip comes with several caveats
should you decide to use it. Foremost is
that DAO raises an error if the property
you seek doesn’t exist. Appropriate error-
checking is advised. You can find a com-
plete example in the VB5 help file under
the CreateProperty topic. A less complete,
but still helpful, example is also included in
the VB4 help file. This capability was added
after Access 2.0 and the compatibility layer
update, making it unavailable in VB3.
Option Explicit

Private wrd As Word.Application

Private Sub Command1_Click()
With CommonDialog1

.ShowOpen
Call WordOpen(.Filename)

End With
End Sub

Private Sub Form_Load()
Call WordStart

End Sub

Private Sub Form_Unload(Cancel As Integer)
If Not wrd Is Nothing Then

wrd.Quit
Set wrd = Nothing

End If
End Sub
Private Function WordStart() As Boolean
On Error Resume Next
Set wrd = CreateObject("Word.Application")
If Err Then

MsgBox "Cannot Start Microsoft Word"
Debug.Print Hex(Err.Number), Err.Description

Else
wrd.Visible = True
WordStart = True

End If
End Function

Private Sub WordOpen(ByVal Filename As String)
On Error Resume Next
wrd.Documents.Open Filename
If Err.Number = &H800706BA Then 'Automation error

Call WordStart
wrd.Documents.Open Filename

End If
End Sub
Automating Microsoft Word. This little sample illustrates how to open multiple documents in Microsoft Word without
creating new instances for each document. This listing is the complete code from a form with just two controls: a common

dialog and a command button.

LISTING 1
c Programmer’s Journal OCTOBER 1997 93

I N T E R M E D I A T E

Q & A Q & A

I N T E R M E D I A T E

Code Online
You can find all the code published in this
issue of VBPJ on The Development Exchange
(DevX) at http://www.windx.com. All the list-
ings and associated files essential to the ar-
ticles are available for free to Registered
members of DevX, in one ZIP file. This ZIP file
is also posted in the Magazine Library of the
VBPJ Forum on CompuServe. DevX Premier
Club members ($20 for six months) can get
each article’s listings in a separate file, as well
as additional code and utilities for selected
articles, plus archives of all code ever pub-
lished in VBPJ and Microsoft Interactive
Developer magazines.

Display Text with Property
Settings
Locator+ Codes
Listings ZIP file (free Registered Level):
VBPJ1097

 Listings for this article plus the fully built
sample demonstrating OLE Automation with
Word 97 (subscriber Premier Level): QA1097P
USE OLE AUTOMATION FOR
WORD DOCUMENTS
I’m trying to run an application

such as Word, using Shell from VB, to
open a document file. When I finish view-
ing it, instead of killing it, I’d like to keep it
around and use it to open a different docu-
ment when I need it. My command looks
like this:

MyAppID = Shell_
("C:\MSOFFICE\WINWORD\" & _
"WINWORD.EXE " & strDocFile, _
vbNormalFocus)

The problem is that it opens a copy of
Word each time. After viewing five docu-
ments, I have five Word copies running.
—P. Bruce Sung, received by e-mail

A
Your scenario presents two vi-
able approaches, the simpler of
which is to use the ShellExecute

API rather than VB’s Shell function.
ShellExecute uses an existing instance of
Word to open additional documents rather
than starting a new instance for each docu-
ment. For more details, see Knowledge
Base article Q170918, “How To Use
ShellExecute to Launch Associated File
(32-bit).” Here’s a quick example, using a
common dialog control to pick the file:

Private Declare Function ShellExecute _
Lib "shell32.dll" Alias _
"ShellExecuteA" _
(ByVal hwnd As Long, _
ByVal lpOperation As String, _
ByVal lpFile As String, _
ByVal lpParameters As String, _
ByVal lpDirectory As String, _
ByVal nShowCmd As Long) As Long

Private Sub Command1_Click()
With CommonDialog1

.ShowOpen
Call ShellExecute(Me.hWnd, _

"open", .Filename, "", "", _
vbNormalFocus)

End With
End Sub

The other option, OLE Automation, is
considerably more involved, but offers
much more opportunity to manipulate
the document(s) from within your app. If
you want to do more than simply open a
document and view it, this is the route
worth investigating. I’ve worked up a
simple sample applet that demonstrates
the basic principles. To re-create it, open
a new project, select “Microsoft Word 8.0
Object Library” from the Project-Refer-
ences dialog, and enter the code I’ve in-
cluded (see Listing 1).
94 OCTOBER 1997 Visual Basic Programmehttp://www.windx.com
I chose to use early binding by declar-
ing a variable explicitly as Word.Appli-
cation rather than as Object, which serves
to improve performance because VB can
resolve external references before com-
piling. I declared this variable at the form
level, so it would be readily accessible
throughout the demo. In a real applica-
tion, depending on your needs, you might
use global scope for such a variable.

The demo starts by creating a new
instance of Microsoft Word in the
Form_Load event. The user can then press
a command button to display a common
file dialog. The program passes the se-
lected file to the Word object in the
WordOpen subroutine. Using the Open
method of the Word object’s Documents
collection, a single line of code opens the
file. Firmly believing in restoring a com-
puter to the state I found it in, I coded the
demo to shut down Word in the
Form_Unload event.

It’s been said before, but the advice is
invaluable when you start experiment-
ing with OLE Automation: get into the
habit of pressing the F2 key to bring up
the object browser. By adding the refer-
ence to the Word object library, you can
view all exposed objects together with
their associated methods, properties,
and events. Although I rarely need this
sort of operation and am not familiar
with the Word object model, I threw
together this demo in a short time with
the help of the object browser.

ASKING FOR TROUBLE
I use VB5. I recently downloaded
a VB3 decompiler from a VB Web

site. I wanted to look at this really neat
VB3 program’s source code. Everything
worked fine, but when I tried to view the
FRM files in VB5, it said the files were in
binary format and couldn’t be viewed. Is
there any VB3-to-VB5 converter of source
code? If not, what can I do to use the code
in VB5?
—Name withheld

A
Wow. Where to start with this
one? I have omitted the names
you mentioned for your and their

protection. I believe you are referring to a
VB3 decompiler by Ash Rofail and Dr.
Hans P. Diettrich (who uses the handle
“DoDi” online).

I will answer your question because I
believe there’s a nugget of information in
it that might interest others. Before doing
that, however, I must say I find what you’re
doing to be totally uncool and probably
illegal. I’m stunned you would publicly
ask for help in stealing someone else’s
code. Perhaps it never occurred to you
r’s Journal Visual Bas
that this is what you’re doing. Although it
might seem like a great learning tool, con-
sider how you’d feel if your competitors
someday applied a similar tool to pro-
grams you had written.

Your question highlights the situation
many were concerned about when this
decompiler first became available. While
there is one legitimate use of this prod-
uct—recovering one’s own source from
an EXE—it is generally viewed as a method
to facilitate theft. The authors, of course,
have a different view, and have stated
that the decompiler was written to high-
light the potential for such a tool to be
developed. Hmmm. In their defense, a
method to protect applications from such
tampering might be found by searching
for “VBGuard” on the Internet (or, see
“Master the Black Art of the VB Inter-
preter,” VBPJ December 1996).

That said, the reason you can’t load
the recovered source is that VB3 used a
binary format by default, and this tool
does likewise with form files. Using the
binary format has always been a danger-
ous choice, as one bad byte could corrupt
an entire file. Microsoft dropped the bi-
nary format with the introduction of VB4.
If you want to bring the old code forward,
you have no choice but to load it into VB3,
select Save File As from the File menu, and
check the Save as Text box for each file in
the project. You should also realize that if
the form you’re trying to convert uses any
nonstandard VBXs, you can never load it
successfully into VB5 without first ob-
taining updated OCX versions of those
controls.
http://www.windx.comic Programmer’s Journal OCTOBER 1997 94

	Code

