
Make the Most
of Resources

PROGRAMMING
TECHNIQUES

Click & Retrieve

Source

CODE!
Resource files are
underappreciated in VB4.

by Karl E. Peterson

duction of VB1. With VB4, Microsoft added capabilities far ex-
ceeding old DOS Basics, incorporating resource (RES) files within
the language. Yet I hardly ever hear of anyone taking advantage of
this new tool—perhaps because of the archaic resource compiler
that shipped with VB4? If so, have I got wonderful news for you!
This month, I’ll tell you about a great freeware tool you can use to
create resource files, and show you a few tricks you can use once
you’ve put a resource file together. These tricks are a bit different
from what you will commonly see as the reasons for using
resource files, such as providing localization support with mul-
tiple string resources in different languages. No, the uses of RES
files are often limited only by your imagination.

Before you do anything, though, download VBRes from the
Registered Level of The Development Exchange (for details, see
the Code Online box at the end of this article). This is an
incredible little tool that was written entirely with VB4 by Gregg
Irwin, who coauthored Visual Basic Controls Desk Reference CD:
The Definitive Book of Third-Party VBX and DLL Controls.
VBRes allows you to build resource files using any sort of
input data, assign resource types and IDs, and compile to
both 16- and 32-bit RES files (see Figure 1). If you plan to
build both 16- and 32-bit apps, it’s important to load the
proper RES file into your project, as it won’t work in the
wrong environment. VBRes’ drag-and-drop MDI interface
is a delight to work with compared to the alternative RC
supplied with VB4 and other Microsoft products.

Here’s just one example of how easy it is to add
functionality VB programmers have been searching for
since VB was introduced. Have you ever wanted to supply

ne of the cooler enhancements of VB4 is perhaps one that
is the least appreciated. Basic programmers have be-
moaned the loss of the DATA statement since the intro-
Karl E. Peterson is a GIS analyst with a regional transportation
planning agency and a member of the Visual Basic Programmer’s
Journal Technical Review Board. Based in Vancouver, Wash-
ington, he’s also an independent programming consultant and
a writer. Karl coauthored Visual Basic 4
How-To, from Waite Group Press. Online, he’s
a section leader in the VBPJ Forum 32-Bit
Bucket, a Microsoft MVP@Large, and active
in the chat area on The Development
Exchange Web site. Contact Karl in the
CompuServe forums at 72302,3707, on the
Internet at karl@rtc.wa.gov, or on DevX.

http://www.windx.com
a choice of icons within your application so the user can pick
which icon shows up in Program Manager or in a shortcut? To
do so, simply compile a number of icons into a RES file and
include the RES file in your project. There’s only one rule you
need to follow—VB reserves ID #1 for the application’s icon.
This is the default icon defined in the “Make EXE” dialog. As you
can see in Figure 1, I’ve built a resource file with a series of moon
icons (the ones placed in the \vb\icons\elements folder while
installing VB). After compiling an application that uses this RES
file, I can choose “Change Icon” while setting up a shortcut to it,
after which I’m presented with all the icons in the RES file in
addition to the default application icon (see Figure 2).

MARK PROGRESS WITH ANIMATION
Icons embedded in resource files provide you with the raw mate-
rials to communicate to your user that your application is busy
with something. Simply by enabling a timer, you can provide the
sort of animation used by Netscape and Internet Explorer when
they’re retrieving data from the Internet (see Figure 3). Begin by
making sure that the “Standard OLE Types” reference is selected
for your project, then declare a form-level Picture object in the
Declarations section of your form. Place a Timer control on your
form, and set its interval to around 100 milliseconds. On each Timer
event, determine which icon to use next, load it from the RES file,
and call DrawIcon to display it in the proper position on your form:

Private m_MoonIco As Picture

Private Sub Timer1_Timer()
t
A Windows-Based Resource Compiler. VBRes is an MDI apple
written entirely in VB4 by Gregg Irwin. It provides relief from the

command-line resource compiler provided by Microsoft with VB4. You can
download it from the Registered Level of The Development Exchange.

FIGURE 1
Visual Basic Programmer’s Journal JANUARY 1997 119

PROGRAMMING
TECHNIQUES
Static Which As Integer
Static X As Long, Y As Long

Which = ((Which + 1) Mod 8)
Set m_MoonIco = LoadResPicture(Which _

+ 101, vbResIcon)
120 JANUARY 1997 Visual Basic Programmer’s Journal
' If form is resizable, calc (X,Y)
' on each call.
X = (Me.ScaleWidth \ Screen.TwipsPerPixelX) - 40
Y = (Me.ScaleHeight \ Screen.TwipsPerPixelY) - 40
Call DrawIcon(Me.hdc, X, Y, _

m_MoonIco.Handle)
End Sub

I chose to have the Picture object exist at the form level
because in a case such as this, minimizing overhead is the
objective. The point is to inform the user that the program is
busy, but to do so without adding tremendously to its burden.
The DrawIcon API preserves the transparent areas of the icon,
allowing you to draw over any sort of background. DrawIcon
requires only a handle to the device context (in this case, the
form itself), X and Y coordinates, and a handle to an icon. While
Picture box or Image controls offer such a handle through their
Picture properties, the Picture object also offers it, but by the
more intuitive Handle property. When your application is through
with the task at hand and you’ve disabled the Timer control,
you’ll probably want to either restore the default icon or clear
the area used to display this progress indicator.

USE SOUND RESOURCES
Another neat way to use RES files is to embed sounds directly
within your application. Although this is not a resource type
directly supported by VB, it’s a simple matter to load the sounds
into memory. When compiling your RES file, assign a Resource
Type of “SOUND,” “WAVE,” or some other unique string to the
sound file. If you’re using VBRes, you can do this by right-
clicking on the file name and bringing up the Properties dialog.
When you want to play one of these sounds, you can use the VB
function LoadResData to load the sound resource into a byte
array, and call the appropriate API:

Private Declare Function PlaySoundData _
Lib "winmm.dll" Alias "PlaySoundA" _
(lpData As Any, ByVal hModule As _
Long, ByVal dwFlags As Long) As _
LongPrivate m_snd() As Byte

Public Function PlaySoundResource(ByVal _
SndID As Long) As Long
Dim snd() As Byte
Const Flags = SND_MEMORY Or SND_SYNC _

Or SND_NODEFAULT
Offer a Choice of Icons For Your Application. By
including extra icons in your app’s RES file, you can let

your users pick one to represent your app in shortcuts or Program
Manager. The only precaution is to ensure that all icons are
assigned an ID greater than one.

FIGURE 2
Multiple
Effects

Made Simpler with
RES Files. This
shows how you can
use DrawIcon to
place an icon over a
painted background,
preserving the
icon’s transparency.
By rapidly calling
DrawIcon with a
series of icons,
you can effectively
duplicate the method

FIGURE 3

of indicating a busy state used by many Internet browsers. RES files are
also useful for storing bitmaps used for any number of purposes, such
as the background of this form and the radio and check box buttons.
http://www.windx.com

PROGRAMMING
TECHNIQUES
snd = LoadResData(SndID, "SOUND")
PlaySoundResource = _

PlaySoundData(snd(0), 0, Flags)
End Function

If you’re using VB4/16, you will be presented with a slight
limitation here because LoadResData only returns up to 64K of
data. It is up to you to ensure that no resources are larger than
this, or you run the risk of an “Out of String Space” error. Even
though the docs don’t make the distinction, this is definitely not
the case in 32-bit VB4, where you can load a resource of any size.
You also may have noticed that this function plays sounds
synchronously—that is, it doesn’t return until the sound is
finished playing. If you wish to start the sound and immediately
return, another “interesting” situation presents itself. What
becomes of the byte array when the function exits? As you most
likely surmised, it goes out of scope and is released. That
obviously won’t do. For starters, it is nearly guaranteed that
most sounds will not have had time to finish playing. Worse is
http://www.windx.com

LISTING 1 CPictureDC Class Offers a Device Context for Pictur
context as one of their parameters. If you store graphics i

handle for them. Using this class solves the problem because it create
Picture object’s bitmap.

Dim m_pict As Picture
the prospect of potential GPFs, as the system attempts to read
memory that has already been discarded.

One potential workaround is to declare the byte array at the
module level. Doing this prevents it from being deallocated as
the function exits. But this approach raises the question, “What
happens if PlaySoundResource is called again while a previous
sound is still playing?” Again, the mind boggles at the possibility
of GPFs. Amazingly, it does seem quite safe, at least from my
experiments. To be entirely safe, you may wish to set up a
scheme that uses two byte arrays, alternating on each call.

WHAT TO DO WITH A HANDLE?
I hate using controls when memory serves the same purpose.
Controls just drag along all their associated baggage (slower
form loads, extra resource consumption, and so on) and offer
few benefits in many cases. For example, suppose you want to
tile a bitmap across the back of your forms. The old approach
would be to load a hidden Picture box with the bitmap at design
time, then perform a series of BitBlts whenever the form needs
'
'
'
P

E

P

E

'
'
'
P

E

P

E

P

E

VERSION 1.0 CLASS
BEGIN
 MultiUse = -1 'True
END
Attribute VB_Name = "CPictureDC"
Attribute VB_Creatable = False
Attribute VB_Exposed = False
Option Explicit
'
' Win32 API Declarations, Structures, and Constants
'
Private Declare Function CreateCompatibleDC Lib _
"gdi32" (ByVal hdc As Long) As Long

Private Declare Function SelectObject Lib "gdi32" _
(ByVal hdc As Long, ByVal hObject As Long) As Long

Private Declare Function DeleteObject Lib "gdi32" _
(ByVal hObject As Long) As Long

Private Declare Function GetObj Lib "gdi32" Alias _
"GetObjectA" (ByVal hObject As Long, _
ByVal nCount As Long, lpObject As Any) As Long

Private Declare Function GetDesktopWindow Lib _
"user32" () As Long

Private Declare Function GetDC Lib "user32" _
(ByVal hWnd As Long) As Long

Private Declare Function ReleaseDC Lib "user32" _
(ByVal hWnd As Long, ByVal hdc As Long) As Long

'
' Bitmap Header Definition
'
Private Type BITMAP '14 bytes
bmType As Long
bmWidth As Long
bmHeight As Long
bmWidthBytes As Long
bmPlanes As Integer
bmBitsPixel As Integer
bmBits As Long

End Type
'
' Member variables
'
Dim m_bmp As BITMAP
Dim m_hDC As Long
Dim m_hBmp As Long
Dim m_hBmpTmp As Long
e O
n O
s
 **
 Initialization and Termination
 **
rivate Sub Class_Initialize()
Dim hWndScn As Long
Dim hDCScn As Long
'
' Get desktop DC, and create compatable DC.
'
hWndScn = GetDesktopWindow()
hDCScn = GetDC(hWndScn)
m_hDC = CreateCompatibleDC(hDCScn)
Call ReleaseDC(hWndScn, hDCScn)
nd Sub

rivate Sub Class_Terminate()
'
' Clean up resources
'
If m_hBmp Then

Call SelectObject(m_hDC, m_hBmpTmp)
End If
Call DeleteObject(m_hDC)
nd Sub

 **
 Public Properties
 **
ublic Property Let hBitmap(NewVal As Long)
Static PropSet As Boolean
'
' Write-once handle to bitmap
'
If PropSet = False Then

m_hBmp = NewVal
m_hBmpTmp = SelectObject(m_hDC, m_hBmp)
Call GetObj(m_hBmp, Len(m_bmp), m_bmp)
PropSet = True

End If
nd Property

ublic Property Get hDC() As Long
hDC = m_hDC
nd Property

ublic Property Get bmType() As Long
bmType = m_bmp.bmType
nd Property
Visual Basic Programmer’s Journal JANUARY 1997 121

bjects. Many GDI calls, such as BitBlt, require a source device
LE Picture objects, it can be tricky to provide a device context

a screen-compatible device context into which it selects the OLE

CONTINUED ON PAGE 122.

repainting (see Figure 3). Depending on your needs, if you had
a number of forms you wanted to use this effect with, it could
either turn quite cumbersome to code or would suck up extra
system resources as you placed this same Picture box on each
form. With VB4, if you have the “Standard OLE Types” reference
Public Property Get Width() As Long
Width = m_bmp.bmWidth

End Property

Public Property Get Height() As Long
Height = m_bmp.bmHeight

End Property

Public Property Get WidthBytes() As Long
WidthBytes = m_bmp.bmWidthBytes

End Property

Public Property Get Planes() As Integer
Planes = m_bmp.bmPlanes

End Property

Public Property Get BitsPerPixel() As Integer
BitsPerPixel = m_bmp.bmBitsPixel

End Property

Public Property Get Bits() As Long
Bits = m_bmp.bmBits

End Property

' **
' **

CONTINUED FROM PAGE 121

checked for your project, you can load bitmaps from a RES
file into a Picture object in memory and potentially save a lot of
system resources. As with many good things, trade-offs
are often required. The problem with Picture objects is they
don’t expose (because they don’t consist of) a device context
and its handle.

The problem becomes how to use the Handle property
exposed by Picture objects with the many APIs that require an
hDC value. I’ve written a small class module that solves this
problem by selecting a Picture object’s bitmap into a temporary
memory device context (see Listing 1). To use this class, declare
a new instance of it within a subroutine and assign any hBitmap
to its hBitmap property. You then can call any function that
requires an hDC source by substituting the value returned from
the class’ hDC property:

Dim pic As New CPictureDC
Dim trans As Long

' Assign Picture object’s Handle to
' class
pic.hBitmap = m_Options.Handle
TransColor = &HC0C0C0
Call TransBlt(Me.hdc, X, Y, 16, 16, pic.hdc, 16, 0, TransColor)

This example comes from the project shown in Figure 3.
TransBlt is a routine with its origins in the Knowledge Base article
Q94961, “How to Create a Transparent Bitmap Using Visual
Basic.” That code was presented in 16-bit only, but if you’d like a
32-bit translation that I also enhanced somewhat, download
ResDemo from the Premier Level of The Development Exchange.
As you can see, I simply assign the hBitmap to the class, and then
I’m able to use its hDC property as I would if this were an actual
control. Because this code is taken from a subroutine, you don’t
need to clean up by setting the class to Nothing—it conveniently
terminates itself as it goes out of scope.

The CPictureDC class works by creating a memory bitmap
that’s compatible with the screen. First, GetDesktopWindow is
called to obtain a handle to the screen window, then GetDC is
used to obtain the screen window’s device context handle. This
hDC is used with CreateCompatibleDC to create a memory device
context with the same characteristics (color depth and device
capabilities) as the screen. The last preliminary step is to release
the desktop DC so that other processes can use it.

The assignment of the hBitmap property is the guts of the
class. It’s written as a write-once property, allowing only one
bitmap to be assigned per instance of the class. With the first
assignment, the passed hBitmap is selected into the memory
device context, and a reference to the bitmap that was previously
stored in it is preserved. It is important that this original bitmap
is restored before the memory device context is destroyed, which
is why hBitmap is designed as a write-once property.

One oddity of the Picture object is that its Height and Width
properties are expressed in HIMETRIC format. Because few VB
programmers would choose this measurement system, the
CPictureDC class takes this opportunity to obtain additional
properties of the bitmap and expose them in addition to the hDC.
A quick call to the GetObject API fills a BITMAP structure with a
number of useful values, each of which are then exposed through
corresponding read-only property routines.

The real beauty of class modules is that you can write them
to do so much, and they require so little. In this case, CPictureDC
cleans up after itself in its Terminate event by selecting the
original bitmap back into the memory device context, then
deleting the memory device context. Forgetting to do this will

cause rapid system resource depletion! This step is intended to
be performed automatically if you declare instances of
CPictureDC at the local level. As your routine ends, a local class
instance will go out of scope and its Terminate event will trigger.
What could be easier?

SYSTRAY UPDATE
In my last column, “Stay in the Tray” [VBPJ November 1996], I
presented a method to embed your applications within the
taskbar tray, and it has since been pointed out that there was a
slight problem with how the popup menu behaved. If the user
clicked on some other object after the menu popped up, then the
menu failed to disappear. The fix for this problem is to make a
call to SetForegroundWindow immediately before calling the
PopupMenu method, placing the invisible form that contains
the menu into the foreground:

Case WM_RBUTTONUP
Call SetForegroundWindow(Me.hwnd)
Me.PopupMenu mPopup, , , , mPop(0)

While this workaround fixes the recalcitrant menu, it brings on
yet another problem. If you load and show a form modally from
the popup menu’s Click event, you’ll trigger a GPF. To get around
this wrinkle, load the form invisibly, call SetForegroundWindow
with the new form’s hWnd, then show it modally. My thanks to
Don Bradner for working through these issues with me.

Code Online
You can find all the code published in this issue of VBPJ on The
Development Exchange (DevX) at http://www.windx.com. All the list-
ings and associated files essential to the articles are available for free to
Registered members of DevX, in one ZIP file. This ZIP file is also posted
in the Magazine Library of the VBPJ Forum on CompuServe. DevX
Premier Club members ($20 for six months) can get each article’s listings
in a separate file, as well as additional code and utilities for selected
articles, plus archives of all code ever published in VBPJ and Microsoft
Interactive Developer magazines.

Make the Most of Resources
Locator+ Codes
Listings ZIP file plus VBRes.zip, which allows you to build resource files
using any sort of input data, assign resource types and IDs, and compile
to both 16- and 32-bit RES files (free Registered Level): VBPJ0197

 Listings for this article plus ResDemo.zip, which is an enhanced
32-bit translation of TransBlt (subscriber Premier Level): PT0197P

Author’s Note: VBPJ is redefining its columns starting next month,
so this is the last installment of the Programming Techniques
column. It’s been an assignment I’ve truly enjoyed, and I’m deeply
grateful for both the opportunity to have worked on it and all the nice
messages I’ve received from you over the last year and a half.
Hopefully, Jonathan Wood and I will find new niches in the
redesigned VBPJ, and we can continue exploring the back allies of
VB together for some time to come!

124 JANUARY 1997 Visual Basic Programmer’s Journal

PROGRAMMING
TECHNIQUES

http://www.windx.com

	CODE!

