
c
o
s
f

g
A
M
p
P
c
v
o
s
a
c
E
f
s

w
1
1
l

V
a

F
S
w

PROGRAMMING
TECHNIQUES

1

K
p
J
V
d
c
G
V
i
C

t
s
d
o
p
i
t

T
p
a

b

C Click & Retrieve
Source

CODE!
his column dishes up a healthy
ortion of tips to satisfy your VB3
ppetite.

y Karl E. Peterson

hef’s Surprise
M

f
1
o
o
V
t
o

c
m
y
t
o
S
t

D
O
to use the default system colors so they will blend in nicely with

t
r
W
G
t
c
c
P
a
b
B
a
p
y

olumn mainly on VB3. As luck would have it, my columns often run
ver their allotted space, so there are several tips stacked up on the
helf. This presents the opportunity to whip up something creative
rom the back of the cupboard to serve the VB3 users out there.

I’ll begin with two subclassing techniques (for more back-
round, see the September 1995 feature, “Subclass Your Way
round VB’s Limitations,” by Jonathan Wood and I). Both use the
SGHOOK.VBX written by Zane Thomas, which originally ap-
eared in the second edition of Visual Basic How-To (Waite Group
ress) but was modified for the subclassing article. The more
urrent Visual Basic 4 How-To provides both 16- and 32-bit OCX
ersions of MsgHook. The new OLE controls offer more options
ver how messages are handled, so the VBX was updated to use the
ame syntax and provide the same functionality. The sample code
nd control discussed in this column is available online in a file
alled SUBCLS.ZIP. Download the file from VBPJ’s Development
xchange on the World Wide Web at http://www.windx.com, or

rom either the VBPJ CompuServe Forum or MSN site. For details,
ee “How to Reach Us” in Letters to the Editor.

Next, I’ll show you how to emulate the Win32 Sleep API function
ith VB3 or 16-bit VB4 code. This technique was employed by the
6-bit demo of the CProgressBar class that I presented in the March
996 Programming Techniques column, “Making Progress” (down-
oad PT0396.ZIP for the complete listing).

Finally, I’ll provide a quick look at a new function provided in
B4 that enables you to test for Unicode-induced string corruption,
mong other things (download PT0596.ZIP for a demo project).

ORCING AN APP TO REMAIN MINIMIZED
ome applications don’t need a windowed user interface. You

efore you start in on this column, I’ll run through this
month’s specials. Because most of this issue of VBPJ is
about VB4, the editors have asked that I concentrate this
ould typically write these to process large quantities of data in

38 MAY 1996 Visual Basic Programmer’s Journal

arl E. Peterson is a GIS analyst with a regional transportation
lanning agency and a member of the Visual Basic Programmer’s
ournal Technical Review Board. Based in
ancouver, Washington, he’s also an indepen-
ent programming consultant and a writer. Karl
oauthored Visual Basic 4 How-To, from Waite
roup Press. Online, he’s a section leader in the
BPJ Forum 32-Bit Bucket and a Microsoft MVP

n the MSBASIC Forum. Contact Karl in either
ompuServe location at 72302,3707.
he background, or to sit idly by monitoring and reacting to
ystem events. If you’ve written such an application, you may
ecide that it’s best for it to remain minimized either as an icon
r in the Windows 95 taskbar. However, Visual Basic doesn’t
rovide a convenient means of doing so. If a form’s WindowState

s reset to Minimized whenever a Form_Resize event occurs,
here’s still an ugly flash as the form first restores to Normal or
aximized.

Hooking the WM_QUERYOPEN message provides a means
or your form to be notified before its state is altered (see Listing
). An application can notify Windows that the icon may be
pened by returning a nonzero value, or prevent the icon from
pening by returning zero. To implement this technique in
isual Basic, simply return zero in the Result parameter when

he Message event is fired. There is no need to invoke the
riginal window procedure.

As a precaution, do not perform any actions that would
ause an activation or alter the focus while processing this
essage. To provide some degree of user interaction with

our iconized application, implement the code presented in
he September 1995 article to add one or several menu
ptions to the form’s system menu. If you download
UBCLS.ZIP, you will find this project saved as MINAPP, and
he system menu project saved as SYSCMD.

ETECTING SYSTEM COLOR CHANGES
ften when painting custom elements on your forms, you want
n
m
c

he appearance of the
est of the screen.
indows offers the
etSysColor API call

o retrieve any of the
olors that the user
an set in Control
anel for items such
s buttons, title bars,
orders, and so on.
ut, what if the user
lters his or her color
references while
our program is run-
ing? For perfor-
ance reasons, you

an store the system

colors in an array, allowing you to draw with them immediately
rather than having to call the GetSysColor API each time. If you
decide to do this, you need to update the contents of the array
to reflect the changes in the system’s color preferences.

Hooking WM_SYSCOLORCHANGE provides notification
whenever the system colors change. This message is closely
followed with a WM_PAINT message that will fire the
Form_Paint event in your project. By retrieving each of the
system colors during the hooked Message event, the color
Trouble De tec ted ! The
UniCorruption function could

detect corruption occurring as strings are
converted back and forth between Unicode
and ANSI.

FIGURE 1
http://www.windx.com

PROGRAMMING
TECHNIQUES

M
s

A

array is refreshed prior to the painting (see Listing 2). There
is no need to invoke the original window procedure, as VB has
never reacted to this message.

Notice how the array of colors is initially filled. Rather than
LISTING 1 Remain Minimized, Please. You can use MsgHook to p
being restored to either a normal or maximized state. I

probably also want to alter the system menu, to allow for some degree o

.

http://www.windx.com

LISTING 2

Const COLOR_GRAYTEXT = 17

Detect System Color Changes. Use this code with MsgHo
your application to store an array of system colors that will be

changes settings in Control Panel. This will automatically coordinat
colors the user selects.

duplicate the looping code, SendMessage is employed to fire I
sgHook’s Message event during the Form_Load event, by
ending the WM_SYSCOLORCHANGE message to the main form.

DDING A DELAY
Visual Basic Pro

revent an application from
n a project like this, you’d
f interaction with your users.

ok to provide a method for
 updated whenever the user

e your application with the

n the March 1996 Programming Techniques column, I pre-

d
t
G
z
n
(
m
b
o
s
w
h
T
t
a
t
t

sented the CProgressBar class
and a demo project that used the
(Win32) Sleep API call to add de-
lays while incrementing an imita-
tion progress bar. Here’s a quickie
trick you can use in VB3 or VB4 to
emulate the Sleep function with
your 16-bit code. The Win16 API
includes a GetTickCount function
that retrieves the number of mil-
liseconds that have elapsed since
Windows was started. This Sleep
subroutine will wait at least the
requested number of millisec-
onds before returning:

Declare Function GetTickCount _
Lib "User" () As Long

Sub Sleep(dwMS As Long)
Dim AllDone As Long
'
' Enter an idle loop for
' dwMS milliseconds.
'
AllDone = GetTickCount() + _

dwMS
Do While GetTickCount < _

AllDone
DoEvents

Loop
End Sub

Two considerations are in or-
er when using this routine. First,
he value returned by
etTickCount wraps around to
ero after Windows has been run-
ing for approximately 49 days
when you’re done laughing, re-
ember that your application may
e running in NT). The likelihood
f this happening is slim, but
hould be taken into account when
riting applications that run 24
ours a day, seven days a week.
he other consideration is that

he DoEvents in the idle loop may
llow other processes to consume
he processor, causing the delay
o be longer than requested.

KEYWORD OF THE MONTH:
STRCONV
One of the more interesting new
keywords in VB4 is StrConv. It
does essentially what the name
implies—it converts a string.
There are a nine different conver-
sions StrConv will perform, but
Option Explicit

' We want to catch WM_QUERYOPEN
Const WM_QUERYOPEN = &H13

Sub Form_Load ()
'
' Ensure minimized state
' (could also be set at design
' time). Set MinButton and
' MaxButton to False at design
' time for cleaner control menu
'
Me.WindowState = 1 'Minimized
'
' Setup MsgHook
'
MsgHook.HwndHook = Me.hWnd
MsgHook.Message(WM_QUERYOPEN) = _

True
End Sub

Sub MsgHook_Message (Msg As Integer, _
wParam As Integer, _
lParam As Long, Result As Long)

'
' Prevent icon from restoring by
' returning 0. No need to
' invoke default window procedure.
'
If Msg = WM_QUERYOPEN Then

Result = 0
End If

End Sub
Option Explicit

' Windows message to watch for
Const WM_SYSCOLORCHANGE = &H15

' Win16 API calls
Declare Function GetSysColor Lib _
"User" (ByVal nIndex As _
Integer) As Long

Declare Function SendMessage Lib _
"User" (ByVal hWnd As _
Integer, ByVal wMsg As Integer, _
ByVal wParam As Integer, lParam _
As Any) As Long

' System Colors
Const COLOR_SCROLLBAR = 0
Const COLOR_BACKGROUND = 1
Const COLOR_ACTIVECAPTION = 2
Const COLOR_INACTIVECAPTION = 3
Const COLOR_MENU = 4
Const COLOR_WINDOW = 5
Const COLOR_WINDOWFRAME = 6
Const COLOR_MENUTEXT = 7
Const COLOR_WINDOWTEXT = 8
Const COLOR_CAPTIONTEXT = 9
Const COLOR_ACTIVEBORDER = 10
Const COLOR_INACTIVEBORDER = 11
Const COLOR_APPWORKSPACE = 12
Const COLOR_HIGHLIGHT = 13
Const COLOR_HIGHLIGHTTEXT = 14
Const COLOR_BTNFACE = 15
Const COLOR_BTNSHADOW = 16
Const COLOR_BTNTEXT = 18
Const COLOR_INACTIVECAPTIONTEXT = 19
Const COLOR_BTNHIGHLIGHT = 20

' Array to hold system colors
Dim SysColor(COLOR_SCROLLBAR To _
COLOR_BTNHIGHLIGHT) As Long

Sub Form_Load ()
'
' Setup MsgHook control
'
MsgHook.HwndHook = Me.hWnd
MsgHook.Message(WM_SYSCOLORCHANGE)_

= True
'
' Preload system color array
'
Dim nRet As Long
nRet = SendMessage(Me.hWnd, _

WM_SYSCOLORCHANGE, 0, 0&)
End Sub

Sub MsgHook_Message (Msg As Integer, _
wParam As Integer, _
lParam As Long, Result As Long)

Dim i As Integer
If Msg = WM_SYSCOLORCHANGE Then

'
' Update color table.
'
For i = COLOR_SCROLLBAR To _

COLOR_BTNHIGHLIGHT
SysColor(i) = GetSysColor(i)

Next i
End If

End Sub
grammer’s Journal MAY 1996 139

PROGRAMMING
TECHNIQUES

P

s.
three stand out as immediately useful. Two conversions dupli-
cate the LCase and UCase functions, and four others perform
double-byte/single-byte character set conversions and
Katakana/Hiragana conversions. Of the three standouts, the
most popular one will probably be vbProperCase, which con-
verts the first letter of each word in a string to upper case, and
all other letters to lower case.

But, even more interesting are the two conversions between
Unicode and ANSI. These can be useful when you are moving
data between Byte arrays and Strings. For example, this code
will compress a Unicode string into its ANSI representation
within a Byte array:

 Dim b() As Byte
 b = StrConv(Text1.Text, vbFromUnicode)

A conversion such as this may be useful when you need to
operate on the individual bytes within the string, or simply
when you want to save space before storing data. Caution:
beware that any time Windows converts between Unicode and
ANSI, there is a potential for data corruption. This can occur if
there’s not a direct correlation between Unicode and ANSI
within the default code page in use on the host computer. This
will generally not be the case in the United States, but other
locales may be less likely to have direct 1:1 mapping between
the character sets. VB4/32 forces conversion of Strings from
Unicode to ANSI whenever they’re passed to DLLs, including
such seemingly innocuous activities as placing text in a text
140 MAY 1996 Visual Basic Programmer’s Journal

LISTING 3

E

Detecting Unicode Conversion Corruption. This
code should detect whether you are likely to experience

corruption of your string data due to conversions between Unicode
and ANSI.

b
a
a

t
U
t
c
t
s
f
i
c
t

t
L
f
t
i
a
c
t
u
t

ox or upon the clipboard. To convert such a compacted Byte
rray back to a String, just use the related option, vbUnicode,
s shown here:

Text1.Text = StrConv(b, vbUnicode)

Given the potential for corruption, this is still a useful func-
ion because it can in fact detect corruption. If you pass a
nicode String to an ANSI Byte array and then convert that back

o a different String, comparing the original and the final Strings
an give you a good indication if you’re in a situation where the
hreat of data corruption exists. Of course, you won’t know for
ure unless you create a string containing all possible bytes
rom zero to 255. Just to ensure “complementary” corruption
sn’t occurring in both directions, one more test is advised. After
onverting the first String to a Byte array, test each element of
he array, checking for the anticipated values.

Here, in the United States, the UniCorruption function re-
urns False on all the systems I have available to test it on (see
isting 3). I would greatly appreciate hearing from you if this

unction returns True where you are. Many folks are upset with
he possibility of this corruption, and it would be most interest-
ng to find out if it’s actually occurring. If I do hear back from
nyone on this, I promise to report their findings in a future
olumn. In any event, if your applications are shipping around
he globe, it may be wise to include this function and ask your
sers to notify you if it ever triggers a True response. Hopefully,
hey’ll never see a warning similar to Figure 1.
ublic Function UniCorruption() As Boolean
Dim b() As Byte
Dim i As Integer
Dim s1 As String
Dim s2 As String
'
' Create string containing all 256 ANSI char
'
s1 = Space(256)
For i = 0 To 255

Mid(s1, i + 1, 1) = Chr(i)
Next i
'
' Convert from Unicode to ANSI, then back.
'
b = StrConv(s1, vbFromUnicode)
s2 = StrConv(b, vbUnicode)
'
' Test 1: String equivalency.
'
If s1 <> s2 Then

UniCorruption = True
Exit Function

End If
'
' Test 2: Proper values in byte array.
'
For i = 0 To 255

If b(i) <> i Then
UniCorruption = True
Exit Function

End If
Next i
nd Function
http://www.windx.com

	CODE

