
PROGRAMMING
TECHNIQUES

PROGRAMMING
TECHNIQUES
Class modules aren’t just for
business rules.

Subclassing?

by Karl E. Peterson
how to encapsulate “business rules” in class modules. The
client/server community is seemingly ecstatic over this
newfound ability, and not without reason. Yet, after spending
more than a year using Visual Basic 4.0, I still haven’t seen
anyone (other than the coauthors of Visual Basic 4 How To)
cover what to me is one of the most exciting possibilities
Class modules offer. My favorite technique is adding func-
tionality to common controls and forms with little code once
the Class module has been polished. I’ll introduce this tech-
nique in this column.

No, this is not subclassing in the classic sense, but it’s
close. Using Class modules, you can provide plug-in event
handlers, often with a single line of code. These could be used
to extend or modify the standard behavior of your controls
and forms. After seeing the transformation ahead, I believe
you’ll be impressed with the opportunities available.

In my November column, I presented a method you can
use in either Visual Basic 3.0 or 4.0 to add “type-amatic”
searches to list box controls. I consider that example to be
control oriented, because all the code required to implement
it was found in control events within the Form module.

This month, those routines will be transformed into a VB4
Class module that can give the same capabilities to any list
box, with the addition of three simple lines of code. Even
more amazing, two of these instructions simply set up the
class for searching list boxes. Only one line of code is re-
quired to notify the class whenever the user has entered a
keystroke. From there, the class takes care of the dirty work.
After building the CListSearch class, you can add it to any
existing project, and within minutes greatly enhance your
project’s user interface.

Because I’ve already dealt with the method used to search

f all the innovations Visual Basic 4.0 introduced, the
most revolutionary is probably the new Class mod-
ule. By now, you’ve no doubt read many accounts of
Karl E. Peterson is a GIS analyst with a regional transportation
planning agency, an independent consultant,
a member of the Visual Basic Programmer’s
Journal Technical Review Board, and coau-
thor of Visual Basic 4 How To, from Waite
Group Press. Online, he’s the 32-Bit Bucket
section leader in the VBPJ Forum and a
Microsoft MVP in the MSBASIC Forum. Con-
tact Karl on either CompuServe section at
72302,3707.

©1991–1996 Fawcette Technical Publications
a list box in detail in a previous column, this month I will
concentrate on working up a generic, control-enhancing Class
module that you can plug into any project with ease. To begin,
start a new project, and from the Insert menu select Class
Module.

In the Properties dialog, set its Name to CListSearch, and
leave the other properties set to their defaults. You do not
need to set this class as either Public or Creatable because it
will be used only within individual projects. While you could
wrap it up in an in-process OLE server, I prefer to keep code
such as this with the project. In a group programming effort,
you may want to consider compiling all the control-enhanc-
ing classes you write into a single OLE server if this approach
works better in your environment.

Typically, this column covers a number of different tech-
niques. However, I devoted this month’s column to fully
developing a single technique because I believe it will prove
so useful. After reading through this example and consider-
ing the potential it offers for enhancing your applications,
hopefully you’ll agree. You can download the code from this

CONTINUED ON PAGE 132.
Two List Boxes Using the Same Searching Class.
This project expands on the November technique so that

multiple list boxes can use the same code for “type-amatic”
searches. A VB4 class module provides the mechanism, requiring
only three lines of code in the form for each enhanced list box.

FIGURE 1
Visual Basic Programmer’s Journal JANUARY 1996 129

PROGRAMMING
TECHNIQUES
column from the Magazine Library of the VBPJ Forum on
CompuServe (type GO VBPJ and search for PT0196.ZIP).

CONTINUED FROM PAGE 129.
130 JANUARY 1996 Visual Basic Programmer’s Journal
BUILDING CLISTSEARCH
To make the CListSearch class truly generic, it’s best to
decide up front whether to support both 16- and 32-bit appli-
cations. Because list boxes are available to and used in both
environments, and the API calls are straightforward, this is an
easy call to make. Enter this code to conditionally include API
declarations and constants in the Declarations section of the
class:

Option Explicit
'
' API Declarations and constants
'
#If Win16 Then

Private Declare Function _
SendMessage Lib "User" (ByVal hWnd _
As Integer, ByVal wMsg As Integer, _
ByVal wParam As Integer, lParam As Any) As Long

Private Const LB_FINDSTRING = &H410
#ElseIf Win32 Then

Private Declare Function _
SendMessage Lib "user32" Alias _
"SendMessageA" (ByVal hWnd As _
Long, ByVal wMsg As Long, ByVal _
wParam As Long, lParam As Any) As Long

Private Const LB_FINDSTRING = &H18F
#End If
Private Const LB_ERR = (-1)

Notice that SendMessage has been aliased so that it has
the same name, and therefore you can call it using the same
code in either Win16 or Win32 operating systems.

Watch for whether API constants have the same values.
For this class, LB_FINDSTRING is different, while LB_ERR is
the same in Win16 and Win32. Lack of attention to this sort of
detail can cause untold aggravation.

The CListSearch class requires that a number of variables
be maintained internally, cordoned off from the outside. The
OOP terminology for this is member variable (please don’t
write to me about my terminology for OOP terminology being
off—I just concentrate on practical aspects, and leave the
semantics for the zealots). You use such variables to store
the values of class properties after validation, as well as to
store other data that is only accessible to the code within the
class. Add these member variable allocations to the Declara-
tions section of CListSearch:

'
' Set aside storage for private member
' variables.
'
Private m_List As ListBox
Private m_LastKey As Double
Private m_TimeLimit As Long
Private m_ExtendSearch As Boolean
Private m_Beep As Boolean

Class modules offer an Initialize event in which you can set
the default values for class properties and other member
variables. This event will be the first code to execute within
the class: it’s fired upon instantiation. CListSearch must
maintain a reference to the list box it is “subclassing,” but
because this object is unknown at instantiation, you set
m_List to Nothing. The m_LastKey variable stores the time of
the last keystroke, but again this is unknown at this point so
LISTING 1

Public Property Set Client(NewObj As _
Object)
'
' Set new ListBox as Client property.
'
If TypeOf NewObj Is ListBox Then

If NewObj.Sorted Then
Set m_List = NewObj
m_LastKey = Now

Else
Err.Raise Number:=vbObjectError + 2, _

 Source:="CListSearch.Client", _
 Description:="Client ListBox" & _

must have Sorted = True."
End If

Else
Err.Raise Number:=vbObjectError + 1, _

 Source:="CListSearch.Client", _
 Description:="Client property" & _

"must be of type ListBox."
End If

End Property

Setting the Client Property of CListSearch. By
accepting a generic Object, rather than insisting on a list

box, allowance is made for enhancing the class to handle other
object types.
©1991–1996 Fawcette Technical Publications

PROGRAMMING
TECHNIQUES
you set it to zero.
An arbitrary time limit of two seconds is stored as 2000

milliseconds in the m_TimeLimit variable. This value is used
to either extend ongoing, or start new searches as the user

NO, THIS IS NOT SUBCLASSING

IN THE CLASSIC SENSE,

BUT IT’S CLOSE.

enters additional keystrokes. If the last keystroke occurred
prior to the time limit, a new search is begun. Otherwise, the
current one is extended.

The m_ExtendSearch variable is used simply as an inter-
nal flag for adding characters to the current search string.
The m_Beep variable is a flag used to determine if the class
should emit a beep when a search fails.

' *************************************
' Initialize
' *************************************
Private Sub Class_Initialize()

'
' Set default values for class
' properties.
'
Set m_List = Nothing
m_LastKey = 0
m_TimeLimit = 2000 '2 seconds
m_ExtendSearch = False
m_Beep = True

End Sub

The first property to add to CListSearch is one that iden-
tifies the list box on which to operate. I’ve named this prop-
erty Client and allowed it to accept any type of Object as a
parameter. The incoming parameter could have been re-
stricted to list boxes, but leaving the option open allows you
to enhance the class to work with other types of controls,
such as combo boxes. Similarly, a control-enhancing class
that added capabilities to scroll bars would need to handle
both horizontal and vertical varieties, and you may set up
graphics classes to work with both Forms and Picture boxes.

When the Client property is set, its validation code checks
that the proper object type was passed (see Listing 1). If a list
box was passed as the new Client, the reference to it is stored
in m_List, and m_LastKey is set to the current time. If the
passed object was not a list box, an error is raised using all
the information necessary for the programmer to identify and
handle it within the calling application. If an error is raised in
a Class module, the point at which execution halts is deter-
mined by a setting in Visual Basic’s Tools-Options-Advanced
dialog. Select “Break on Unhandled Errors” to allow a calling
application to receive the error raised in a Class module.

Next, add a corresponding Get property procedure to
allow an application to retrieve a reference to the list box this
instance of CListSearch is using. Although this procedure will
be called rarely, avoid making properties write only. Omitting
©1991–1996 Fawcette Technical Publications
the Get half of the property procedure pair would prevent a
client application from retrieving this information, even for
debugging purposes:

Public Property Get Client() As Object
'
' Return ListBox as Client property.
'
Set Client = m_List

End Property

The next pair of property procedures added to CListSearch
serves the purpose of setting and retrieving TimeLimit. These
procedures allow the calling application to set the length of
time to wait between keystrokes when extending the current
search. Remember that in the Initialize event, this value was
set to 2000 milliseconds. Before accepting a new value for
TimeLimit, the incoming setting is checked to confirm it is
positive. If it’s negative, m_TimeLimit is set to zero. Other-
wise whatever was passed is accepted.
Visual Basic Programmer’s Journal JANUARY 1996 131Visual Basic Programmer’s Journal JANUARY 1996 131

PROGRAMMING
TECHNIQUES
Public Property Let TimeLimit _
(NewVal As Long)
'
' Set new value for number of
' milliseconds to wait between
' keystrokes when continuing
' a search.
'
If NewVal > 0 Then

m_TimeLimit = NewVal
Else

m_TimeLimit = 0
End If

End Property

Public Property Get TimeLimit() _
As Long
'
' Return current value for
' TimeLimit property.
'
TimeLimit = m_TimeLimit

End Property

The last pair of property procedures
added to CListSearch provide an option to
turn off the default beep produced when
searches fail. No validation is required be-
cause this property is Boolean. I chose the
132 JANUARY 1996 Visual Basic Program
default True to match the behavior found in
Win95’s Explorer. However, not everyone
appreciates a beeping computer so I pro-
vided the option to turn it off:

Public Property Let AudibleError _
(NewVal As Boolean)
'
' Store whether or not to beep when
' search fails.
'
m_Beep = NewVal

End Property

Public Property Get AudibleError() _
As Boolean
'
' Return current value for
' AudibleError property.
'
AudibleError = m_Beep

End Property

KeyPress is the only Public method of-
fered by CListSearch. The code here is
essentially what was used in the KeyPress
event of the control-oriented project I cov-
ered in a previous column. You’ll notice it’s
virtually identical, with the addition of a few
mer’s Journal ©1
lines of code that determine whether the
last user keystroke was within the time limit
allowed for an extended search. As you will
see shortly, the beauty of wrapping this
code up in a class is that you no longer need
to enter it in the KeyPress event of every list
box you want to enhance (see Listing 2).

PUT IT TO THE TEST
Now that you’ve developed the
CListSearch class module, you need to
build a simple project to test how it
works and to demonstrate how easy it is
to add searching capabilities to any num-
ber of list boxes. Start by adding two list
boxes and two labels to the default
Form1 of your project (see Figure 1).
Control positioning is not important be-
cause you can handle that in the form’s
Resize event.

You will use some simple API calls to
find the Windows and System directories
during the form’s Load event so the list
boxes can be filled with sample data, but
you will need to declare these calls in the
form’s Declarations section. Again, I’ve
used conditional compilation so this
project will run in either the 16- or 32-bit
versions of Visual Basic 4.0. To use the
CListSearch class, you also declare two
New objects of this type in the Declara-
tions section. The search implementation
code count so far is one line per control
(see Listing 3).

During the Form_Load event,
GetWindowsDirectory and GetSystemDi-
rectory are called to locate the respective
directories. These paths are then used to
fill the two list boxes with the names of all
files located in either place. This provides
sample data to test the search capabili-
ties offered by CListSearch. Also during

AFTER BUILDING THE

CLISTSEARCH CLASS,

YOU CAN ADD IT TO AN

EXISTING PROJECT

AND GREATLY ENHANCE

YOUR PROJECT’S USER

INTERFACE.
991–1996 Fawcette Technical Publications

PROGRAMMING
TECHNIQUES

LISTING 2 The Core Of the Class. The KeyPress method of CListSearch performs the actual searching whenever it is notified that the
user has pressed a key. Code in this method would previously have been inserted in the List_KeyPress event, but has now been

abstracted to deal with the “subclassed” list box.

©1991–1996 Fawcette Technical Publications
Form_Load, a reference to one of the list boxes is passed to each
declared instance of CListSearch, so that the class instance will
know which object to perform its searches on. The defaults for
other properties of CListSearch are accepted by simply not
bothering to change them. The search implementation code
count so far is two lines per control (see Listing 4).

Now I’ll show you how incredibly powerful Visual Basic 4.0
classes can be. To fire the search mechanism in either instance of
CListSearch, only one more line of code is required for either
instance. When the user presses a key while a “subclassed” list
box has focus, that keystroke is passed from the List_KeyPress
event to the class’ KeyPress method. After performing its search,
based on the criteria set in the class, the KeyPress method
returns either a zero if a search was performed or the original
keystroke for further processing.

Further processing is necessary if a search is found not
desirable (for example, in cases where non-alphanumerics,
such as an arrow key or the enter key, are pressed). The return
value is assigned to the List_KeyPress’ KeyAscii parameter so
that Visual Basic will ignore the keystroke or act on it based on
what happened in the class. If further processing in the
List_KeyPress event is desired, for example, to act on the Enter
key, code for that may follow the call to the class KeyPress
method. The search implementation code count is now three
lines per control.

Private Sub List1_KeyPress(KeyAscii As Integer)
'
' Allow class module to do all the work
Public Function KeyPress(KeyAscii As Integer)
Static Search As String
Dim Index As Long
Dim DoSearch As Boolean
Dim Elapsed As Double
Const SecsPerDay = 86400
'
' Check if more than allowed time has elapsed.
'
If m_ExtendSearch Then

Elapsed = Now - m_LastKey
If (Elapsed * SecsPerDay) > (m_TimeLimit / _

1000) Then
m_ExtendSearch = False

End If
End If
'
' Start over if delay was too long.
'
If Not m_ExtendSearch Then

Search = ""
m_ExtendSearch = True
Index = m_List.ListIndex

Else
Index = -1

End If
'
' Check for valid keystrokes.
'
If KeyAscii = vbKeyBack Then

'
' Allow user to take back last key.
'
If Len(Search) Then

Search = Left(Search, Len(Search) - 1)
DoSearch = True
End If

ElseIf KeyAscii >= vbKeySpace Then
'
' Append latest key.
'
Search = Search & Chr(KeyAscii)
DoSearch = True

End If
'
' Perform search after valid keystrokes.
'
If DoSearch Then

Index = SendMessage(m_List.hWnd, _
LB_FINDSTRING, Index, ByVal Search)

If Index <> LB_ERR Then 'Found a match!
m_List.ListIndex = Index

Else 'No match
Search = Left(Search, Len(Search) - 1)
If m_Beep Then Beep

End If
'
' Record when key was pressed, and consume
' keystroke (by returning 0) so VB doesn't
' automatically move list to entry that
' starts with last key.
'
m_LastKey = Now
KeyPress = 0

Else
'
' Return passed KeyAscii value so original
' KeyPress routine can continue processing.
'
KeyPress = KeyAscii

End If
End Function
Test Form Declarations. API functions are declared
using conditional compilation to allow use in either 16-

or 32-bit versions of VB4. Two instances of CListSearch are created
for this test of the class.

LISTING 3

Option Explicit
'
' Windows API Declarations
'
#If Win32 Then
Private Declare Function GetWindowsDirectory _

Lib "kernel32" Alias "GetWindowsDirectoryA" _
(ByVal lpBuffer As String, ByVal nSize As _
Long) As Long

Private Declare Function GetSystemDirectory _
Lib "kernel32" Alias "GetSystemDirectoryA" _
(ByVal lpBuffer As String, ByVal nSize As _
Long) As Long

#ElseIf Win16 Then
Private Declare Function GetWindowsDirectory _

Lib "Kernel" (ByVal lpBuffer As String, _
ByVal nSize As Integer) As Integer

Private Declare Function GetSystemDirectory _
Lib "Kernel" (ByVal lpBuffer As String, _
ByVal nSize As Integer) As Integer

#End If
'
' Create searchable listbox objects
'
Private cLstWin As New CListSearch
Private cLstSys As New CListSearch
Visual Basic Programmer’s Journal JANUARY 1996 133

PROGRAMMING
TECHNIQUES
'
KeyAscii = _

cLstWin.KeyPress(KeyAscii)
End Sub

Private Sub List2_KeyPress(KeyAscii _
As Integer)
'
' Allow class module to do all the
' work!
'
KeyAscii = _

cLstSys.KeyPress(KeyAscii)
End Sub

The method I presented in a previous
column used form-level variables to track
data now stored in each instance of
CListSearch. Obviously, this would get
unwieldy if you wanted a number of
searching list boxes on a single form.
The overall number of lines of code would
have nearly doubled as well, due to du-
plicating the KeyPress code in the events
of each enhanced list box. By wrapping
up this functionality inside a Visual Basic
4.0 class, and creating a separate instance
of it for each enhanced list box, your
form requires considerably less code.
134 JANUARY 1996 Visual Basic Program
Plus, the savings are multiplied by the
number of enhanced list boxes on the
form.

You can consider a number of possi-
bilities for enhancing the CListSearch
class. One that comes to mind immedi-

ately is to add an ExtendSearch property
you could reset when a list box gains
focus. Although it would be unlikely that
a previous search would be continued,
setting this property to False on a

CLASS MODULES OFFER AN

INITIALIZE EVENT IN WHICH

YOU CAN SET THE DEFAULT

VALUES FOR CLASS

PROPERTIES.
mer’s Journal ©1
List_GotFocus event would ensure that
to be the case. Another potential en-
hancement would be to add support for
combo boxes to the CListSearch class.

The technique presented this month
should give you all kinds of ideas for
enhancing controls and forms in your
projects. I’d love to hear about the inter-
esting one you devise. Reach me on ei-
ther the VBPJ Forum or the MSBASIC
Forum on CompuServe at 72302,3707.
The editors of Visual Basic Programmer’s
Journal and I would also like to know if
you want to see more examples of this
type, or if this diversion from multiple
techniques in one column is something
that should be used only on an occa-
sional basis.
Private Sub Form_Load()
Dim path As String
Dim file As String
Dim nRet As Long
'
' Fill List1 with \Windows files.
'
path = Space(256)
nRet = GetWindowsDirectory _

(path, Len(path))
file = Dir(Left(path, nRet) _

& "*.*")
Do While Len(file)

List1.AddItem file
file = Dir()

Loop
Label1.Caption = Left(path, nRet)
'
' Fill List2 with \Windows
' \System files.
'
path = Space(256)
nRet = GetSystemDirectory _

(path, Len(path))
file = Dir(Left(path, nRet) _

& "*.*")
Do While Len(file)

List2.AddItem file
file = Dir()

Loop
Label2.Caption = Left(path, nRet)
'
' Setup searchable listbox
' objects
'
Set cLstWin.Client = List1
Set cLstSys.Client = List2
'
' Center form
'
Me.Move (Screen.Width - Me. _

Width)\ 2, (Screen. _
Height - Me.Height) \ 2

End Sub

LISTING 4 Setting Up the Test Form.
While the form is loading, two

list boxes are filled with the contents of the
Windows and system directories. References
to the list boxes are then passed to separate
CListSearch instances so the class can take
over keystroke handling.
991–1996 Fawcette Technical Publications

	Subclassing
	Source Code

