
PROGRAMMING
TECHNIQUES
In the new version of Visual Basic,
watch out for ETC, unaffectionately
known as “Evil Type Coercion.”

Coercion Aversion

by Karl E. Peterson
Basic’s strengths as a language has always been that it could
coerce one type of variable to be another, the rules followed for
such coercions were generally well understood and very strict.
For instance, if you assigned an Integer value to a Long variable,
Basic wouldn’t throw an error but would simply coerce the data
from one type to another. But, if you assigned a String to an
Integer, kaboom! The result was highly predictable—a Type
Mismatch Error.

The rules have changed with VB4. Now, if it’s even remotely
possible, your data will be coerced to fit into whatever variable
type is thrown at it. Suppose you have a routine that expects to
receive a String and an Integer. (For this test, it’s not important
what the routine does, just what shape the parameters arrive
in.) The routine calls the String function to generate a string of
aStr characters that is aNum long, and this is displayed in the
Debug window:

Sub ETCDemo1(aStr As String, aNum As Integer)
Debug.Print String(aNum, aStr)

End Sub

Say you accidentally reverse the parameters in the call,
passing the Integer first and the String second. VB3 would throw
a “Type Mismatch” error, right? A simple test shows that not
only does VB4 fail to generate an error, but it happily coerces
your parameters to fit:

Sub Main()
Dim i As Integer
i = 4
Call ETCDemo1(i * 2, CStr(i))
'<-- Oops! Switched parameters
Call ETCDemo1(CStr(i), i * 2)

ne of the more interesting topics of discussion during the
long beta process of VB4 was Evil Type Coercion, or ETC
as it was more commonly referred to. While one of
148 NOVEMBER 1995 Visual Basic Programmer’s Journal

Karl E. Peterson is a GIS Analyst with a regional transportation
planning agency and a member of the Visual Basic Programmer’s
Journal Technical Review Board. He’s also an independent pro-
gramming consultant and a writer based in Vancouver, Washing-
ton. He is the coauthor of Visual Basic 4.0 How To, from Waite
Group Press. He’s the 32-Bit Bucket Section Leader for the VBPJ
Forum and a Microsoft MVP in the MSBASIC Forum. Contact Karl
in either CompuServe location at 72302,3707.
'<-- Parameters in proper order
End Sub

The first call to ETCDemo1 prints “8888” in the Debug
window. Welcome to ETC! Were the parameters not (acciden-
tally) reversed, as the second call shows, the intended result
would have been “44444444.” The “rule” in this case is that if
you pass a variable by value (this includes expressions, tempo-
rary variables, and literals), and it can be coerced into what the
called routine expects, it will be. This is totally new behavior
that no version of Basic has ever exhibited, so it could easily
catch you off guard. And, even though you might expect it
would help, Option Explicit has no impact on this bizarre
behavior. Watch out for it.

NEW MATH: A+B<>1+A+B???
ETC can also lead to some very strange “math” errors. I’ll add
another demo routine to show you just how messed up this can get:

Sub ETCDemo2(a As String, b As String)
Debug.Print "a = "; a, , TypeName(a)
Debug.Print "b = "; b, , TypeName(b)
Debug.Print "a + b = "; a + b, , _

TypeName(a + b)
Debug.Print "a + 1 = "; a + 1, , _

TypeName(a + 1)
Debug.Print "a + b - 1 ="; a + b - 1, _

TypeName(a + b - 1)
Debug.Print "1 - a + b ="; 1 - a + b, _

TypeName(1 - a + b)
Debug.Print "a + b + 1 ="; a + b + 1, _

TypeName(a + b + 1)
Debug.Print "1 + a + b ="; 1 + a + b, _

TypeName(1 + a + b)
End Sub

Call ETCDemo2 passing the literals 1 and 23 as the first and
second parameters:

Call ETCDemo2(1, 23)

This output appears in the Debug window:

a = 1 String
b = 23 String
a + b = 123 String
a + 1 = 2 Double
a + b - 1 = 122 Double
1 - a + b = 23 Double
a + b + 1 = 124 Double
1 + a + b = 25 Double

The first thing you’ll probably notice is that VB4 didn’t
throw an error when you passed numbers into a routine that
©1991–1995 Fawcette Technical Publications H O M E

PROGRAMMING
TECHNIQUES
was expecting strings. This is disturbing enough. But, now look
at “new math,” as VB4 defines it. The plus sign in Basic has
historically served a dual purpose of string concatenation and
numeric addition, so it makes sense that (a + b) is “123.”
However, VB3 would have immediately thrown an error on the
(a + 1) instruction, but VB4 merrily coerces “1” to 1 and
performs the addition.

Worse, there has never been an affinity between the minus
sign and strings! Yet, we can subtract 1 from “123” and return
a numeric value of 122. Completely independent of your in-
struction, VB4 has decided that you really meant for that string
to be a number. Likewise, if you subtract “1” from 1, then add
“23,” you end up with a numeric 23. The so-called logic here is
that coercion precedence is occurring left to right, with VB4
favoring a numeric result over a string when one operand is a
number.

This brings us to the title of this topic. By now, it should make
total sense to you, right? (Please excuse the sarcasm. <g>) Using
our left-to-right precedence rule, we can say that the concat-
enated string (a + b) will be “123” and adding 1 will coerce the
“123” to 123 for a result of 124. Placing the 1 at the front of the
equation changes the coercion order, though. Now, 1 plus “1” is
2, and “23” added to that will result in 25. Absolutely logical,
right? (Sorry, there’s that sarcasm again. <g>)

The last thing I’d like point out from this example is just how
“optimized” these coercions make our calculations. Note that
the results, intermediate and final, of the calculations are double
precision. In other words, if you accidentally introduce a string
into your tight integer loop, you’ve greatly increased the over-
head of the math.

If it bothers you that VB now treats specifically typed
variables as Variants, you may wish to contact Microsoft and
LISTING 1 Building a Searching List Box. You can use the LB_FIND
Together with a timer, you can build functionality similar

with a list box, timer, label, and command button.

©1991–1995 Fawcette Technical Publications H O M E
express your displeasure. Perhaps rigorous type checking can
be reinstituted in VB5 if enough folks really care about this. In
the meantime, you can take some alternate routes to avoid
such ETCs. First and foremost, you must make absolutely sure
that you don’t introduce strings into equations. Second, pass
variables by reference rather than by value. This is more than
a little ironic because, historically, passing variables by value
was safer than passing them by reference. You may also want
to consider adopting the ampersand notation for concatenat-
ing strings. Because this newer operator doesn’t carry the
historic baggage of the plus sign, and was introduced with
coercion fully documented, you’re much less likely to acciden-
tally trip over this “new math.” Be as type-explicit as possible,
and there may be some hope. (My thanks to Gregg Irwin and
Zane Thomas for their examples of the ETC problems, and for
helping me carry the torch on this issue!)

Now that I’ve voiced my opinion on the ETC issue, I’ll move
on to a very cool, barely documented, design feature in VB4.
You can now adjust the position or size of controls with your
cursor keys. To move a control, select it, then hold the Control
key down while pressing the arrow keys. Similarly, holding
down the Shift key while pressing the arrow keys resizes the
control. This trick works just as well on multiple controls if you
want to move or size them as a group. If you have Align
Controls to Grid checked on the Environment dialog (select
Tools, Options, then Environment), each press of an arrow key
will increment the position or size by your grid spacing. If this
option is unchecked, the control(s) will move or size by one
pixel with each keystroke.

BUILDING A “TYPEAMATIC” LIST-BOX SEARCH
If you’ve played much with the Windows 95 Explorer utility, or
Option Explicit
'
' API Declarations
'
#If Win16 Then
Private Declare Function SendMessage Lib _

"User" (ByVal hWnd As Integer, ByVal _
wMsg As Integer, ByVal wParam As _
Integer, lParam As Any) As Long

Private Const LB_FINDSTRING = &H410
#ElseIf Win32 Then
Private Declare Function SendMessage Lib _

"user32" Alias "SendMessageA" (ByVal _
hWnd As Long, ByVal wMsg As Long, _
ByVal wParam As Long, lParam As Any) _
As Long

Private Const LB_FINDSTRING = &H18F
#End If
Private Const LB_ERR = (-1)
'
' Flag to indicate if keystrokes are
' being accepted.
'
Private ExtendingSearch As Boolean
'
' Time last keystroke was entered.
'
Private LastKey As Double
'
' Timer settings
'
Private Const msTimeLimit = 2000 '2 seconds
t

Private Const msCheckEvery = 200 '1/5 second

Private Sub Command1_Click()
Unload Me

End Sub

Private Sub Form_Load()
Dim file As String
'
' Fill list box with filenames.
'
file = Dir(Environ("windir") & "*.*")
Do While Len(file)

List1.AddItem file
file = Dir()

Loop
'
' Set timer interval and initialize vars.
'
Timer1.Interval = msCheckEvery
LastKey = Now

End Sub

Private Sub List1_GotFocus()
'
' Restart timer and clear search string.
'
Timer1.Enabled = True
ExtendingSearch = False

End Sub

Private Sub List1_KeyPress(KeyAscii As _
Integer)
Static Search As String

CONTINUED ON NEXT PAGE.
STRING message to locate list items that start with a given string.
o that in the Windows 95 Explorer. Place this code in a VB4 form

Visual Basic Programmer’s Journal NOVEMBER 1995 149

PROGRAMMING
TECHNIQUES

seconds between keystrokes.
with Norton Desktop for Windows, you’ve probably noticed the
neat way you can search for files by typing the first few letters
while the list box has focus. This is accomplished by sending
an LB_FINDSTRING message to the list box with each keystroke
the user enters. One method used to measure the time be-
tween keystrokes is with a Timer control. If more than a set
amount of time elapses, the search string is reset so a new
search can begin. Because a number of events must work
together to make this technique work, I’ve listed the entire
form’s code (see Listing 1). You can download the whole
project from the Magazine library of the VBPJ Forum on
CompuServe (search for PT1195.ZIP).

I implemented this as a conditionally compiled 16/32-bit
form, so it can run in either version of VB4. The only things I
had to think about were the declaration for SendMessage and
the LB_FINDSTRING constant; everything else worked out
naturally. To run this in VB3, remove the Private keywords
(and replace with Dim, if necessary), change the Boolean to
Integer, and remove the conditional compilation directives
and 32-bit declares.

Other than the API declarations, two Private (form-level)
variables are declared to serve as status trackers that must
be available to multiple events within the form. A form-level
Boolean variable, ExtendingSearch, indicates whether the
current search string should have new characters appended
to it, or if it should be cleared and a new search begun when
the user enters another keystroke. Another form-level Double
variable, LastKey, stores the time when the user entered the
150 NOVEMBER 1995 Visual Basic Programmer’s Journal

last keystroke.
The form itself is very
simple (see Figure 1). It
has a list box, command
button, label, and timer
on it. For these controls,
the only setting that’s
really critical is the
Sorted property of the
list box. While the demo
would still work, so to
speak, it would appear
odd at best if this prop-
erty were not set to True.
During the Form_Load
event, the list box is filled
with the contents of
your Windows direc-
tory. Also during the
Form_Load event, the
timer Interval property
is set according to a con-
stant value defined in
the Declarations sec-
tion, and the time of the

last keystroke is set to Now. As for the other controls, the com-
mand button’s only job is to unload the form, and the label
displays which keystrokes are being used to perform the
searches.

The LB_FINDSTRING message searches a list box for the first
©1991–1995 Fawcette Tec
The Searching List Box in
Action. This VB4 project

demonstrates a simple use of
SendMessage to find the first string in a
list that matches whatever the user types
without pausing for more than two

FIGURE 1
Dim Index As Long
Dim DoSearch As Boolean
'
' Start over if delay was too long.
'
If Not ExtendingSearch Then

Search = ""
ExtendingSearch = True
Index = List1.ListIndex

Else
Index = -1

End If
'
' Check for valid keystrokes.
'
If KeyAscii = vbKeyBack Then

'
' Allow user to take back last key.
'
If Len(Search) Then

Search = Left(Search, Len(Search) - 1)
Label1 = " " & Search & " "
If Len(Search) Then

DoSearch = True
Else

DoSearch = False
End If

End If
ElseIf KeyAscii >= vbKeySpace Then

'
' Append latest key.
'
Search = Search & Chr(KeyAscii)
Label1 = " " & Search & " "
DoSearch = True

End If
'
' Perform search after valid keystrokes.
'
If DoSearch Then

LISTING 1 CONTINUED FROM PREVIOUS PAGE.
 Index = SendMessage(List1.hWnd, _
LB_FINDSTRING, Index, ByVal Search)

If Index <> LB_ERR Then 'Found a match!
List1.ListIndex = Index

Else 'No match
Search = Left(Search, Len(Search) - 1)
Beep
Label1 = " " & Search & " "

End If
'
' Record when key was pressed, and consume
' keystroke so VB doesn't automatically

' move list to entry that starts with
' last key.
'
LastKey = Now
KeyAscii = 0

End If
End Sub

Private Sub List1_LostFocus()
'
' Turn off timer for efficiency.
'
Timer1.Enabled = False

End Sub

Private Sub Timer1_Timer()
Dim Elapsed As Double
'
' Check if more than allowed time has ' elapsed.
'
If ExtendingSearch Then

Elapsed = Now - LastKey
If (Elapsed * 86400) > (msTimeLimit / _

1000) Then
ExtendingSearch = False
Label1 = Label1.Tag

End If
End If

End Sub
hnical Publications H O M E

PROGRAMMING
TECHNIQUES
entry that starts with the string passed in lParam. It begins its
search at the index value passed in wParam, and will wrap
around to the beginning of the list if a match is not found below
the index entry. If -1 is used as the index, the search starts at the
very beginning of the list.

The real work of this demo is performed in the List1_KeyPress
event. First, code within the List1_KeyPress event determines if
the last search should be extended by appending the new
keystroke to the previous search string. (This search string is
held as a static variable within the KeyPress event.) If so, the
program assigns the search’s start index from the beginning of
the list through SendMessage to send the LB_FINDSTRING mes-
sage to the list box.

If the keystroke were a backspace, you would use the Left
function to trim the last character from the previous search
string. If the keystroke were any alphanumeric key, generally
one whose ASCII value is greater than or equal to the spacebar,
you would append the character it represents to the previous
search string. In both cases, you update the label control to
show the user what string is about to be used for the search.

Now, you’re ready to actually call SendMessage. With this
message, a return value of LB_ERR (-1) indicates failure. Any
other return value is the index for the matching string that was
found in the list box. If a match is found, you simply set the list
index to that return value. If no match is found, write code that
trims the most recent keystroke from the search string and
beeps to inform the user of the failure. In both cases, record the
time of the keystroke, and set the KeyAscii value to zero. If the
KeyAscii value is not set to zero, VB will move to the first item
in the list that starts with the last letter the user entered after
the KeyPress event is exited.

The last element in the technique is within the Timer event.
LISTING 2 Finding a Window With Only a File Name. The GetMo
application whose file name matches a file name you pa

©1991–1995 Fawcette Technical Publications H O M E
Here, if ExtendingSearch is True, the elapsed time since the
last keystroke took place is compared with a constant value
(two seconds, in this case) to determine if the current search
should continue to be extended or whether a new search
should begin. To calculate the elapsed time, just subtract the
time of the last keystroke from Now. Multiply this value by
86,400 (number of seconds in a day) to convert to seconds. If
the time limit has expired, toggle the ExtendingSearch flag and
clear the status label. For efficiency, the timer is disabled
whenever the list box loses focus, and reenabled when the list
box regains focus.

Use of the Timer is not mandatory. You can write this
searching routine just as effectively without it, but the Timer
does facilitate showing the user what the current search string
is, and when the current search will no longer be extended. A
modified version of this code that eliminates the timer is in-
cluded in the Magazine library of the VBPJ Forum on CompuServe
(search for PT1195.zip).

FINDING A SPECIFIC EXECUTABLE
My next tip was written for VB3, but the code will also run in the
16-bit version of VB4. To run the code in the 32-bit version of VB4,
you will need new declarations and conditional compilation.

Many times, you don’t know whether a given executable is
already running, and would like to find out before attempting
to communicate with it or starting a new instance. You can use
a GetWindow loop to test the module name of each top-level
window encountered (for more information on the GetWindow
loop, see Programming Techniques, VBPJ, September 1995).
This may be the only recourse when there is no reliable
caption to search for, although I’d recommend it as a last
resort because file names may change over time, and those
' Win16 Declarations
Declare Function ShowWindow Lib "User" _
(ByVal hWnd As Integer, ByVal nCmdShow _
As Integer) As Integer

Declare Function FindWindow Lib "User" _
(ByVal lpClassName As Any, ByVal _
lpWindowName As Any) As Integer

Declare Function GetParent Lib "User" _
(ByVal hWnd%) As Integer

Declare Function GetWindow Lib "User" _
(ByVal hWnd%, ByVal wCmd%) As Integer

Declare Function GetWindowWord Lib "User" _
(ByVal hWnd%, ByVal nIndex%) As Integer

Declare Function GetModuleFileName Lib _
"Kernel" (ByVal hModule As Integer, ByVal _
lpFilename As String, ByVal nSize As _
Integer) As Integer

' GetWindow and GetWindowWord Constants
Const GW_HWNDNEXT = 2
Const GWW_HINSTANCE = -6

Function GetModuleHWnd (ByVal Module$) As Integer
Dim hWndTmp%
Dim hInstTmp%
Dim ModTmp$
Dim nRet%
'
' Clean up module name, and create buffer to
' receive names of running modules.
'
Module = Trim$(UCase$(Module))
ModTmp = Space$(128)
du
ss
'
' Find first window and loop through all
' subsequent windows in master window list.
'
hWndTmp = FindWindow(0&, 0&)
Do Until hWndTmp = 0

'
' Make sure this window has no parent.
'
If GetParent(hWndTmp) = 0 Then

'
' Retrieve the instance handle, and use
' that to retrieve the module name.
'
hInstTmp = GetWindowWord(hWndTmp, _

GWW_HINSTANCE)
nRet = GetModuleFileName(hInstTmp, ModTmp, 128)
'
' Compare this window's module name to
' that passed in. Exit if match found.
'
If Right$(Left$(ModTmp, nRet), _

Len(Module)) = Module Then
GetModuleHWnd = hWndTmp
Exit Do

End If
Debug.Print Left$(ModTmp, nRet)

End If
'
' Get next window in master window list
' and continue.
'
hWndTmp = GetWindow(hWndTmp, GW_HWNDNEXT)

Loop
End Function
Visual Basic Programmer’s Journal NOVEMBER 1995 151

leHWnd function uses a GetWindow loop to find the first running
 in.

PROGRAMMING
TECHNIQUES

STATEMENT OF OWNERSHIP, MANAGEMENT, AND
CIRCULATION REQUIRED BY 39 U.S.C. 3685

1. Visual Basic Programmer’s Journal, Pub. No. 10751955

2. Date of Filing: September 25, 1995

3. Published monthly

3A. No. of issues published annually: 12

3B. Annual subscription price: $34.97

4. Known office of publication: 209 Hamilton Ave. Palo Alto,
CA 94301-2500

5. Complete mailing address of the headquarters of the
general business offices of the publisher: Fawcette
Technical Publications Inc., 209 Hamilton Ave. Palo Alto,
CA 94301-2500

6. The names and addresses of the Publisher, Editor, and
Managing Editor are Publisher: James Fawcette, Fawcette
Technical Publications Inc., 209 Hamilton Ave. Palo Alto,
CA 94301-2500; Editor: James Fawcette, Fawcette Technical
Publications Inc., 209 Hamilton Ave. Palo Alto, CA 94301-
2500; Managing Editor: Christine McGeever, Fawcette
Technical Publications Inc., 209 Hamilton Ave. Palo Alto,
CA 94301-2500

7. The owner is: Fawcette Technical Publications Inc. 209
Hamilton Ave. Palo Alto, CA 94301-2500. The names and
addresses of stockholders owning or holding 1% or more
of the total stock are listed below:
“pesky users” <g> may even rename files! Another somewhat
fatal flaw in this strategy is that it is not totally reliable under
Windows NT. But sometimes using a GetWindow loop is simply
your only option.

The GetModuleHWnd function (see Listing 2) loops through
all the windows in the system, until it finds a top-level (one with
no parent) window whose module name matches that passed
into it. A window may be identified as top-level using the
GetParent API. If this is the case, you must then obtain its file
name. The GetModuleFilename API function will return the file
name for any given instance handle (hInst). But because this
loop is through a list of hWnds, each window’s handle must be
converted to an instance handle for its respective application.
The GetWindowWord API returns various information about a
window, one option being its hInst.

Passing the hInst returned by GetWindowWord to
GetModuleFilename fills a buffer with the fully qualified file
name of the process. All that’s required now is a case-insensi-
tive comparison with the file name that was passed into
GetModuleHWnd. By comparing only as many characters from
the right as are in the test string, you offer the option of
ignoring paths (by not fully qualifying the passed string), or
making the path a part of the comparison. If a match is found,
the function returns that window’s hWnd to the calling routine.
A sample applet, RUNNING.MAK, which finds, restores, and
activates other running programs, is included in the Magazine
library of the VBPJ Forum on CompuServe (search for
PT0995.ZIP).
154 NOVEMBER 1995 Visual Basic Programmer’s Journal

James Fawcette, 209 Hamilton Ave. Palo Alto, CA 94301-2500.

8. There are no known bondholders, mortgages, or other
securities.

10. Extent and nature of circulation
Average no. copies each issue during preceding 12 months:
A. Total no. copies (net press run), 101,258; B. Paid and/or
requested circulation 1. Sales through dealers and carriers,
street vendors and counter sales, 20,782; 2. Mail
subscription (paid and/or requested), 65,169; C. Total paid
and/or Requested Circulation (Sum of 10B1 and 10B2),
85,951; D. Free distribution by mail carrier or other means,
samples, complimentary, and other free copies, 4,075; E.
Total distribution (Sum of C and D), 90,026; F. Copies not
distributed 1. Office use, left over, unaccounted, spoiled
after printing, 1,355; 2. Return from News Agents, 9,878; G.
Total (Sum of E, F1, and 2 - should equal net press run
shown in A), 101,259.
Actual no. copies of single issue published nearest to filing
date: A. Total no. copies (net press run), 160,014; B. Paid
and/or requested circulation 1. Sales through dealers and
carriers, street vendors and counter sales, 31,669; 2. Mail
subscription (paid and/or requested), 96,626; C. Total paid
and/or Requested Circulation (Sum of 10B1 and 10B2),
128,295; D. Free distribution by mail carrier or other means,
samples, complimentary, and other free copies, 12,443; E.
Total distribution (Sum of C and D), 140,738; F. Copies not
distributed 1. Office use, left over, unaccounted, spoiled
after printing, 1,400; 2. Return from News Agents, 17,876; G.
Total (Sum of E, F1, and 2 - should equal net press run
shown in A), 160,014.

11. I certify that the statements made by me above are
correct and complete.

James Fawcette, President

®

P R O G R A M M E R ’ S J O U R N A L

SUBSCRIBER
SERVICE INFORMATION

We at VBPJ are dedicated to serving our customers. The
information below will help if you encounter a problem.

For Customer
Service Call

or write to us at: Visual Basic Programmer’s Journal, P.O. Box
58872, Boulder, CO 80322-8872.

Please include a current mailing label or invoice with your
written inquiry. For all telephone inquiries, please provide your
name and zip code as it appears on your mailing label.

How to Read Your Mailing Label

For Changes of Address For uninterrupted service, please notify
us at least 8 weeks in advance. Include your mailing label and
your new address.

Duplicate Notices Correspondence occasionally crosses in the
mail. If you receive a second notice after you have already
responded, please contact us and we will act accordingly.

Missing or Damaged Issues We will gladly replace (inventory
permitting) or extend your subscription one issue if you receive
an issue in unsatisfactory condition. Simply contact us at the
customer service number above.

(303) 684-0365

expiration
date

000111 FWC 2800A000 05P2

JIM FAWCETTE OCT 96
209 HAMILTON AVENUE ZNDC
PALO ALTO CA 94301-2500

matchcode

©1991–1995 Fawcette Technical Publications H O M E

	Coercion Aversion
	Source Code

