
INTERMEDIATE
ASK THE VB PRO

Use a Label Control
as a Hyperlink

by Karl E. Peterson

Ask the VB Pro provides
you with free advice on
programming obstacles,

ABOUT THIS COLUMN

Click & Retrieve
Source

CODE!

Create a Hyperlink Label
I’d like to use a Label control as a hyperlink on my

About box. The design calls for the label to look normal
until the user moves the mouse over it, then “light up”
to resemble a typical hyperlink—blue and underlined.
It’s easy enough determining when to turn on this
effect, but how do I know when to turn it off?

You’ve run into what I’ve always considered a
missing event. It’s simple to detect when the

mouse first moves over a control by watching for a
MouseMove event, but there’s no documented way
to tell when it leaves. Wouldn’t it be nice if there were
a MouseLeave event?

Several solutions have been developed over the
years. You can monitor the underlying form’s
MouseMove event to signal that the mouse is no
longer over your control. But a user can thwart this
strategy by moving the mouse too fast or moving
away from your application using Alt-Tab. Another
method that works fairly well, if you’re using a
windowed control, is to call SetCapture on the first
MouseMove, and test the passed coordinates on
subsequent MouseMove events to determine whether
the mouse is still over that window. This technique
has its downsides too, not the least of which is that it’s
useless for windowless controls.

Recently, reader Mike Bolser shared a discovery of

A

Q

VBPJ AUGUST 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣

LINK

The resource editor for
employing WAV files:
msdn.microsoft.com/
vbasic/downloads/
controls.asp

techniques, and ideas.
Read more answers from
our crack VB pros on the
Web at www.inquiry.com/
thevbpro. You can submit
your questions, tips, or
ideas on the site, or
access a comprehensive
database of previously
answered questions.
his with me that I think you’ll like: You can use old-
fashioned drag-and-drop techniques to obtain the
needed notifications. Place a Label control on your
form and assign the familiar finger-pointing cursor as
its DragIcon. When the MouseMove event fires, set
the Label’s ForeColor property to vbBlue and its
Font.Underline property to True. The ingenious
part, also in MouseMove, is to call the Drag method,
telling it to vbBeginDrag (see Listing 1).

The DragIcon cursor then kicks in, and your label
looks just like a standard hyperlink (see Figure 1). To
turn off the hyperlink look, watch for the State
parameter to equal vbLeave in the Label’s DragOver
event. You then have the equivalent of a MouseLeave
event. The only remaining trick is to overcome the
loss of standard mouse events during a drag opera-
tion. It turns out that when the user clicks on your
Label after dragging has begun, the Label’s DragDrop
event fires. If you have more than one control acting
like this on a single form, you might want to check the
Source parameter to ensure the dropped control is the
same as the one firing the event, just in case the user
moved the mouse very fast.

Then you’re free to fire off the default browser,
pointing it at the appropriate URL:

Private Declare Function ShellExecute _

Lib "shell32.dll" Alias _

"ShellExecuteA" (ByVal hWnd _

As Long, ByVal lpOperation _

As String, ByVal lpFile As String, _

ByVal lpParameters As String, _

ByVal lpDirectory As String, _

ByVal nShowCmd As Long) As Long

Public Sub HyperJump(ByVal URL As String)

Call ShellExecute(0&, _

vbNullString, URL, _

vbNullString, vbNullString, _

vbNormalFocus)

End Sub

You can use the ShellExecute API to fire up nearly
any kind of URL. For example, pass the HyperJump
function a standard Web site address or pass it
“mailto:yourname@yourdomain.com” to ask the
Figure 1 Offer a “Rollover” Effect for
Hyperlinks. Using the code in Listing 1, you can
provide interesting visual feedback as the user moves
the mouse over various controls on your forms. Here,
intrinsic Label and Image controls provide hyperlinks
to my Web site, but the labels look like a hyperlink
only while the mouse hovers over them.
91

92

INTERMEDIATE
ASK THE VB PRO

VB4/32, VB5, VB6 Detect MouseLeave Using Drag-and-Drop

V

Option Explicit
Private m_Active As Boolean
Private Sub Check1_Click()

m_Active = CBool(Check1.Value)
End Sub
Private Sub Form_Load()

Label1.Caption = "http://www.mvps.org/vb"
Label1.Tag = Label1.Caption
Check1.Value = vbChecked

End Sub

Private Sub Label1_DragDrop(Source As Control, _
X As Single, Y As Single)
' If the mouse is over the label, the control
' must be in drag mode. In this case, the
' DragDrop event occurs when the mouse is
' clicked by the user. Fire up the URL!

If Source Is Label1 Then
With Label1

Call HyperJump(.Tag)
.Font.Underline = False
.ForeColor = vbBlack

End With
End If

End Sub
B5, VB6 Bundle Sounds Into a Resource DLL
Private Sub Label1_DragOver(Source As Control, _
X As Single, Y As Single, State As Integer)
' If the control is in dragmode, you can detect
' MouseLeave easily by observing the State parameter.
' Thanks to Mike Bolser for this observation!
If State = vbLeave Then

With Label1
.Drag vbEndDrag
.Font.Underline = False
.ForeColor = vbBlack

End With
End If

End Sub

Private Sub Label1_MouseMove(Button As Integer, _
Shift As Integer, X As Single, Y As Single)
' Entering dragmode on the first MouseMove
' allows easy detection of MouseLeave.
If m_Active Then

With Label1
.ForeColor = vbBlue
.Font.Underline = True
.Drag vbBeginDrag

End With
End If

End Sub
Listing 1 Use this solution as a simple method to detect when the user moves the mouse off a windowless Label or Image control. The
DragOver event’s State parameter tells you immediately when to turn off special effects related to the mouse being over your control.
Option Explicit

' *** flag values for uFlags parameter ***
' play synchronously (default)
Private Const SND_SYNC = &H0
' play asynchronously
Private Const SND_ASYNC = &H1
' silence not default, if sound not found
Private Const SND_NODEFAULT = &H2
' name is a resource name or atom
Private Const SND_RESOURCE = &H40004
' loop the sound until next sndPlaySound
Private Const SND_LOOP = &H8
' don’t stop any currently playing sound
Private Const SND_NOSTOP = &H10
' purge non-static events for task
Private Const SND_PURGE = &H40
Private Declare Function PlaySound _

Lib "winmm.dll" Alias "PlaySoundA" _
(ByVal lpszName As String, ByVal hModule _
As Long, ByVal dwFlags As Long) As Long

Private Declare Function PlaySoundData _
Lib "winmm.dll" Alias "PlaySoundA" _
(lpData As Any, ByVal hModule As Long, _
ByVal dwFlags As Long) As Long

Public Enum ThemeSounds
[SoundFirst] = 101
Asterisk = 101
Beep = 102
CriticalStop = 103
DefaultSound = 104
EmptyRecycleBin = 105
Exclamation = 106
ExitWindows = 107
Maximize = 108
MenuCommand = 109
MenuPopup = 110
Minimize = 111
ProgramError = 112
Question = 113
RestoreDown = 114
RestoreUp = 115
StartUp = 116
[SoundLast] = 116

End Enum

Private Const defAsync As Boolean = True
Private Const defRepeat As Boolean = False
Private Const defYield As Boolean = False
Private m_Async As Boolean
Private m_Repeat As Boolean
Private m_Yield As Boolean
' ***
' Initialization
' ***
Private Sub Class_Initialize()

m_Async = defAsync
m_Repeat = defRepeat
m_Yield = defYield

End Sub

' ***
' Public Properties
' ***
Public Property Let Async(ByVal NewVal As Boolean)

m_Async = NewVal
End Property

Public Property Get Async() As Boolean
Async = m_Async

End Property

Public Property Let Repeat(ByVal NewVal As
Boolean)

m_Repeat = NewVal
End Property Continued on next page.
Listing 2 Use this class to expose all the sounds stored in a DLL’s resource file through a simple interface. Using this strategy, you can
update or replace your application’s sounds by recompiling and redistributing this single DLL file rather than the entire application.
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ AUGUST 1999

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency and
serves as a member of the Visual Basic
Programmer’s Journal Technical Review
and Editorial Advisory Boards. Online, he’s
a Microsoft MVP and a section leader on
several VBPJ forums. Find more of Karl’s
VB samples at www.mvps.org/vb.

About the Author

DOWNLOAD FREE CODE

Download the code for this issue of
VBPJ free from www.vbpj.com, part
of the DevX family of Web sites
(www.devx.com).

To get the free code for this entire
issue, click on Locator+, the right-most
option on the menu bar at the top of the
home page, and type VBPJ0899 into
the box. (You first need to register, for
free, on DevX.) The free code for this
article includes all code listings, plus a
demo using drag-and-drop to provide
the equivalent of a MouseLeave event
for a rollover hyperlink Label, and an
ActiveX DLL example that bundles WAV
files for client applications.

 To get the bonus code for this
article, available to DevX Premier Club
members, type VBPJ0899AP into the
Locator+ field. The bonus code includes
all the free code described above, plus
a fully functional VB6 windowless
UserControl that provides hyperlink
functionality for both text and images.
default e-mail program to generate a new
e-mail addressed to you.

Bundle Sounds
Into an Application

Can I compile WAV files directly into an
EXE or OCX? My application’s EXE re-
sides on a network server but runs in the
client’s workspace. It seems that placing the
WAV files on the server and repeatedly
calling them from the client would cause
excessive and unwarranted network traffic.
Placing the WAV files on every client ma-
chine is not an option in this case.

The simple answer: Compile the WAV
files into your application’s resource file.

I covered the basic details of this method in
“Programming Techniques” [VBPJ January
1997]. That was two VB versions ago, and
things have changed a little. A more elegant
way to accomplish the same task today:
Bundle the resource file within an ActiveX
DLL and call this DLL from the client
application. The DLL approach allows you
to update the sounds easily without
recompiling the entire application.

VB6 ships with a handy resource editor
you can enable from the Add-In Manager.
VB5 users need to download this add-in
from the Microsoft Visual Studio Web site
(see the Link sidebar). Within the resource
editor, add the WAV files as “CUSTOM”
resources. For each sound resource, assign
the ID you want to use with it and reassign
its type to “SOUND” by selecting the Prop-
erties dialog for that resource. After you add
all your WAVs, press the Save button and
dismiss the editor.

You can then rename the default class to
CSounds. You might want to expose a pub-
lic Enum for the resource IDs you assigned

Q

A

VBPJ AUGUST 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
to your WAV files. This makes calling the
proper resource from the client a cinch. The
PlaySound API supports a variety of flags
that alter the way sounds are played back. In
my demo, I chose to support SND_ASYNC,
SND_LOOP, and SND_NOSTOP. You’ll
find complete descriptions of these and the
other flags in the PlaySound SDK docu-
mentation. You can toggle each of these
flags using a simple class property.

You need to include two critical meth-
ods—one to start playing a sound, and
another to stop any playing sound. The
PlayResource method accepts the ID for the
sound you’d like to play, then calculates the
flags for PlaySound based on the settings of
the class’s Async, Repeat, and Yield proper-
ties. Finally, use a call to PlaySound to
provide the return value for the method (see
Listing 2). The StopPlaying method is even
easier. It simply passes a null pointer (or
“NULL” as it’s referred to in the SDK docs)
as PlaySound’s Name parameter and the
flag SND_PURGE.

Calling the finished DLL from your
client couldn’t be easier, once you set a
project reference to the new DLL. You can
either declare a persistent CSound reference
in a form or global module so it’s accessible
at any time, or create an instance on de-
mand. Set the flags as desired, and request
the appropriate sound:

Private m_Snds As CSound

Private Sub DoingSomethingNoisy()

m_Snds.Async = True

m_Snds.Repeat = False

m_Snds.PlayResource CriticalStop

End Sub

A word of caution: Be sure you call the
StopPlaying method before exiting your
application, especially if you find yourself
using the Repeat property to loop the WAV
continuously. Otherwise, your sounds might
continue playing long after your app has
died and gone away, leaving one very frus-
trated user behind. VBPJ
Public Property Get Repeat() As Boolean
Repeat = m_Repeat

End Property

Public Property Let Yield(ByVal NewVal As Boolean)
m_Yield = NewVal

End Property

Public Property Get Yield() As Boolean
Yield = m_Yield

End Property

' ***
' Public Methods
' ***
Public Function PlayResource(ByVal SndID _

Continued from previous page.

As ThemeSounds) As Boolean
Dim Flags As Long
Flags = SND_RESOURCE Or SND_NODEFAULT
If m_Async Then Flags = Flags Or SND_ASYNC
If m_Repeat Then Flags = Flags Or SND_LOOP
If m_Yield Then Flags = Flags Or SND_NOSTOP

PlayResource = PlaySound(CStr("#" & SndID), _
App.hInstance, Flags)

End Function

Public Function StopPlaying() As Boolean
Const Flags As Long = SND_PURGE
StopPlaying = PlaySound(vbNullString, _

App.hInstance, Flags)
End Function
93

