
Get a Grip With
Subclassing

by Karl E. Peterson

Ask the VB Pro provides
you with free advice on
programming obstacles,
techniques, and ideas.
Read more answers from
our crack VB pros on the
Web at www.inquiry.com/
thevbpro. You can submit
your questions, tips, or
ideas on the site, or access
a comprehensive database
of previously answered
questions.

ABOUT THIS COLUMN

INTERMEDIATE
ASK THE VB PRO

Click & Retrieve
Source

CODE!
Add a Size Grip
It appears using the status-bar control is the only

supported method of adding a size grip—those
diagonal lines in the lower-right corner of many
dialogs. However, bundling the comctl32.ocx pack-
age into my distribution set would be major overkill,
because this is all I’d use it for. How can I add a size
grip with straight code?

You’re right. There’s no straightforward way to
add this standard user interface element to VB

forms. That’s a real shame, given it’s much more
difficult to visually distinguish a sizable form from a
nonsizable form under the new shell introduced in
Win95. But it’s certainly nothing a little creative
coding can’t cure.

You can take two approaches. The first approach is
quick, simple, and effectively fakes what you’re after.
Put two label controls in the lower-right corner of the
form. These labels use the Marlett font to display the
grab handle symbols in system highlight and shadow
colors. On MouseDown, VB normally calls SetCapture
to claim all mouse input from that point forward.
When the user presses the mouse button over the
labels, call ReleaseCapture to reverse VB’s native de-
sires. Then call SendMessage to your form’s window
handle, passing WM_NCLBUTTONDOWN as the
message and HTBOTTOMRIGHT in wParam (see
Listing 1). This effectively tells the window—your
form—to enter sizing mode, and Windows takes over
from there.

The second approach is a little dirtier, but gets to
the heart of the matter, taking full control. For this
solution, pull out your favorite subclassing control or
module, and hook WM_PAINT, WM_SIZE, and
WM_NCHITEST.

Painting a size grip is trivial. When your form
receives a WM_PAINT message, invoke the default
window procedure so the form paints as it normally
would. Following the default painting, calculate the
rectangle in which the size grip should be drawn by
offsetting a rectangle from the bottom-right corner of
the form’s client space. First call GetClientRect to fill

A

Q

98
a structure with the coordinates of the entire client
area. Then reduce the Left and Top elements by
subtracting the results of calls to GetSystemMetrics
with SM_CXSIZE (for width) and SM_CYSIZE (for
height). To paint the size grip, call DrawFrameCon-
trol with the calculated rectangle and the appropriate
constants (download Listing A from DevX; see the
Download Free Code box for details).

Because you’re painting elements on the form,
you’re also responsible for erasing them as needed.
In response to the WM_SIZE message, check
whether any part of the rectangle calculated in the
previous step is still within the client area of the
form. Usually it is, but it might not be if the form is
resized rapidly. If the rectangle is still visible, call
InvalidateRect to force that area to be repainted at
the next opportunity. If the rectangle is completely
hidden, cover all bases by posting a WM_PAINT
message back to your form. At that point, allow
default processing to continue.

Now you have the size grip visually in place, but
it still doesn’t have the desired effect of expanding the
area where the user can grab that corner of your form.
Each window is responsible for telling Windows what
part of its nonclient space the cursor is over, and
Windows reacts accordingly. On receipt of nonclient
hit-test (WM_NCHITEST) messages, tell Windows
the cursor is over the bottom-right corner of the
window border when it’s over the area where you
painted the size grip. Establish the coordinates rect-
angle using the same method as for WM_PAINT.
Call the PtInRect API to confirm whether the cursor
is within this rectangle. Return HTBOT-
TOMRIGHT to Windows if the cursor is within the
desired area, and invoke the default window proce-
dure if it isn’t.

Which of the two approaches to use is your call. I’d
likely use the subclassing method myself, because it
requires you to monitor only a few extra messages in
addition to the ones you’re already hooking. It also is
unlikely to break in the future. The shortcut method
could break if, for example, Microsoft decided to use
a font other than Marlett for standard symbols.
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ JUNE 1999

L
r
H

V

VB4/32, VB5, VB6 Add a Size Grip to Forms Without Subclassing

Option Explicit

Private Declare Function ReleaseCapture Lib "user32" () _
As Long

Private Declare Function SendMessage Lib "user32" Alias _
"SendMessageA" (ByVal hwnd As Long, ByVal wMsg As _
Long, ByVal wParam As Long, lParam As Any) As Long

Private Const WM_NCLBUTTONDOWN = &HA1
Private Const HTBOTTOMRIGHT = 17

Private Sub Form_Load()
' Define font for size grip labels. (Done here for
' demo, but probably easier at design time.)
Dim fnt As New StdFont
With fnt

.Name = "Marlett"

.Bold = False

.Size = 12
End With

' Assign all relevant properties to size grip labels.
With lblGrip(0)

Set Font = fnt
.AutoSize = True
.Caption = "o"
.ForeColor = vb3DHighlight
.MousePointer = vbSizeNWSE

isting 1 The two labels display the two Marlett characters that to
equired because of the dual tone. Initiate “sizing mode” on a wind
TBOTTOMRIGHT.

BPJ JUNE 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
gether make up the common size grip “character.” Both labels are
ow by calling SendMessage with WM_NCLBUTTONDOWN and

.ZOrder
End With
With lblGrip(1)

Set Font = fnt
.AutoSize = True
.Caption = "p"
.ForeColor = vb3DShadow
.MousePointer = vbSizeNWSE
.ZOrder

End With
End Sub

Private Sub Form_Resize()
' Position size grip labels at lower-right.
lblGrip(0).Move Me.ScaleWidth - lblGrip(0).Width, _

Me.ScaleHeight - lblGrip(0).Height
lblGrip(1).Move Me.ScaleWidth - lblGrip(1).Width, _

Me.ScaleHeight - lblGrip(1).Height
End Sub

Private Sub lblGrip_MouseDown(Index As Integer, Button _
As Integer, Shift As Integer, x As Single, y As _
Single)
' Negate VB's call to SetCapture, and tell Windows
' that the user is trying to resize the form.
ReleaseCapture
SendMessage hwnd, WM_NCLBUTTONDOWN, HTBOTTOMRIGHT, _

ByVal 0&
End Sub

99

I need a surefire way
to prevent people from
using my DLL in a distributed
application unless they
have registered it.

INTERMEDIATE
ASK THE VB PRO
Subclassing also allows you to extend the feature to non-VB
windows owned by your application, such as a browse or file dialog.
In either case, if you don’t like doing this much work for a solution
that should be simple, you could write to vbwish@microsoft.com
and let them know that SizeGrip should be a standard property on
forms in VB7.
100
Don’t Paint Until Finished Resizing
Is there a way of telling when a user has finished dragging the

form’s edges to resize? I’d like to set a flag to tell my repaint
routine not to draw if the user hasn’t let go of the mouse button
during a resize.

Once again, subclassing comes to the rescue. Windows sends
your form a WM_ENTERSIZEMOVE message when the user

begins resizing your form, and follows with a WM_EX-
ITSIZEMOVE message when the user finishes the resize operation.
If you watch for these messages, and toggle your flag variable in
reaction to them, you can defer your painting until the user stops
dragging the form’s border (see Listing 2). By the way, you can use
the same strategy to defer resizing controls in your form’s Resize
event, too.

Produce a Demo DLL
I’ve written a shareware DLL I’d like to offer for folks to try

before they buy. The problem is that I need a surefire way to
prevent people from using my DLL in a distributed application
unless they have in fact registered it. How can I restrict the usage
of the free download to within the VB Integrated Development
Environment (IDE)?

The GetModuleHandle API provides a quick and dirty way to
cover most bases in this case. This API accepts a file name andA

Q

A

Q

Listing 2 If your form requires extensive reaction when it’s resized,
you might want to defer the continuous firing of Paint and Resize
events until the user finishes sizing the form. Toggle a flag in reaction
to WM_ENTERSIZEMOVE and WM_EXITSIZEMOVE, and don’t
repaint or resize controls unless this flag is set to False.

VB4/32, VB5, VB6 Don’t Paint Until You Need To

Option Explicit

Private Const WM_ENTERSIZEMOVE = &H231
Private Const WM_EXITSIZEMOVE = &H232

Private m_Sizing As Boolean

Private Sub Form_Load()
' Set up subclassing
Msghook1.HwndHook = Me.hWnd
Msghook1.Message(WM_ENTERSIZEMOVE) = True
Msghook1.Message(WM_EXITSIZEMOVE) = True

End Sub

Private Sub Form_Paint()
If Not m_Sizing Then

' Paint something complicated.
End If

End Sub

Private Sub Msghook1_Message(ByVal msg As Long, ByVal _
wp As Long, ByVal lp As Long, result As Long)
' Set flag appropriately, then call default
' window procedure.
Select Case msg

Case WM_ENTERSIZEMOVE
m_Sizing = True

Case WM_EXITSIZEMOVE
m_Sizing = False
Me.Refresh

End Select
result = Msghook1.InvokeWindowProc(msg, wp, lp)

End Sub
Listing 3 Within your ActiveX DLL, you can use GetModuleHandle
to determine whether specific files are mapped into the current
process’s address space. If any of these files are so mapped, you
can reasonably assume your DLL is being called from within a
development environment, not from a distributed EXE.

VB4/32, VB5, VB6 Restrict DLL Usage to the IDE

Private Declare Function GetModuleHandle Lib "kernel32" _
Alias "GetModuleHandleA" (ByVal lpModuleName As _
String) As Long

Private Function TestEnvs() As Boolean
Dim buffer As String
Dim Envs As Variant
Dim nRet As Long
Dim i As Long

' Fill array with the names of all environments in
' which you want users to be able to use your DLL.
Envs = Array("vb.exe", "vb32.exe", "vb5.exe", _

“vb6.exe”)

' Test each array element with GetModuleHandle to see
' if that environment is mapped into the current
' process.
For i = LBound(Envs) To UBound(Envs)

buffer = Envs(i)
nRet = GetModuleHandle(buffer)
If nRet <> 0 Then

m_EnvFileName = buffer
TestEnvs = True
Exit For

End If
Next i

End Function
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ JUNE 1999

returns a handle to that module if the module is mapped into the
address space of the current process. Your assignment is to come up
with the file names of all the development environments from which
you want to allow usage of your DLL. Once you gather these file
names, place them in an array to facilitate iteration and make it easy
to add or remove them as time goes on.

Pass each file name in turn to GetModuleHandle (see Listing 3).
If GetModuleHandle returns a value other than 0, it means the file is
presently mapped into the current address space. From this informa-
tion, you can reasonably assume your user is operating in develop-
ment mode, and not from a distributed EXE. Call the routine housing
this logic from the Initialize event of each object exposed by your
DLL, and alter that object’s behavior based on the return.

Determined folks find a way to break any protection scheme.
With this scheme, they could name their EXE after one of the
targeted IDEs. Most aren’t that foolish, and you can probably rest
assured that users who are probably won’t have a successful
product anyway.

This question makes it three for three this month—three fea-
tures that really should be built into VB but aren’t. Have you written
to vbwish@microsoft.com today? VBPJ

Programmer’s Journal Technical Review and Editorial Advisory
Boards. Online, he’s a Microsoft MVP and a section leader on
several VBPJ forums. Find more of Karl’s VB samples at
www.mvps.org/vb.

Karl E. Peterson is a GIS analyst with a regional transportation
planning agency and serves as a member of the Visual Basic

About the Author

DOWNLOAD FREE CODE

Download the code for this issue of VBPJ free from
www.vbpj.com.

To get the free code for this entire issue, click on Locator+, the
right-most option on the menu bar at the top of the VBPJ home
page, and type VBPJ0699 into the box. (You first need to
register, for free, on DevX.) The free code for this article
includes all code listings, plus the Grabber sample, which adds
a size grip using MsgHook; a demo that defers Paint and
Resize events; and a class that provides IDE mapping detec-
tion. You can download the MsgHook control from the author’s
Web site at www.mvps.org/vb.

 To get the bonus code for this article, available to DevX
Premier Club members, type VBPJ0699AP into the Loca-
tor+ field. The bonus code includes all the free code de-
scribed above, plus an enhanced Grabber sample that imple-
ments native subclassing to add a class-wrapped size grip
and a ready-to-use size grip UserControl that employs the
Marlett method.

101VBPJ JUNE 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣

