
INTERMEDIATE
ASK THE VB PRO

94

Force Your Way
to the Foreground

by Karl E. Peterson

Ask the VB Pro provides
you with free advice on pro-
gramming obstacles, tech-
niques, and ideas. Read more
answers from our crack VB
Pros on the Web at http://
www.inquiry.com/thevbpro.
You can submit your ques-
tions, tips, or ideas on the
site, or access a compre-
hensive database of previ-
ously answered questions.

ABOUT THIS COLUMN

Click & Retrieve
Source

CODE!
 and request intervention due to various critical errors.
I’ve used the SetForegroundWindow API without
fail to bring my app to the front, with one exception:
In the Win98 environment, when I call
SetForegroundWindow, I get only an irritating flash
of the main window’s title bar and the application’s
button in the taskbar. What can I do to restore normal
behavior?

OK, first let’s get the formal admonishment out
of the way. Bringing an app to the foreground

unbidden is bad behavior in most apps. As a devel-
oper, make every effort to avoid the need for this
behavior altogether. Few users appreciate one app
plopping up to the foreground while they’re working
in another. Given all that, no matter what anyone
says, you have to do it at times.

Here’s why your strategy no longer works, and
how you can patch it up. Microsoft has altered the
behavior of SetForegroundWindow under both Win-
dows 98 and Windows 2000 (“The OS Formerly
Known as NT5”). If your application is currently in
the foreground, this API still behaves as it always did.
Then you can bring any window to the front—both
those belonging to your app and those of other apps.
However, if your app doesn’t hold the foreground,
newer versions of Windows simply call FlashWindow
to achieve the flashing effect you describe.

The supreme irony here is that Microsoft apps
have always been among the worst offenders in their
use of SetForegroundWindow. (Ever used Outlook
Express?) You almost get the feeling the systems
programmers were fed up with the applications devel-
opers’ antics and decided to slap their wrists with this
change. The shame of it: Their powerful reach ex-
tends to us all.

Enough background; time to move on to a poten-
tial solution. I’ve written a routine called
ForceForegroundWindow that works in nearly every
case (see Listing 1). Call it by passing the hWnd
property of the form you want to bring to the top.

A

Q Is SetForegroundWindow Broken?
Sometimes my application needs to alert the user
If you want to bring another application’s window
to the foreground, force one of your own windows
with this function, then make a simple
SetForegroundWindow call on the other.

ForceForegroundWindow works by tricking the
operating system into thinking the thread whose
window is up front is the one making the call. My
routine accomplishes this deception with a call to the
AttachThreadInput API, linking your main thread’s
input state with that of the foreground window. At
this point, a call to SetForegroundWindow is permis-
sible under the new rules. One more call to
AttachThreadInput unhooks the two threads.

The final clean-up step calls ShowWindow on the
new foreground window, forcing it to repaint prop-
erly with the foreground attributes. I wrote the rou-
tine so a minimized window would be restored to
normal size as well, because that’s what you want in
most cases.

The only situation I’ve found where
ForceForegroundWindow doesn’t work: when a con-
sole application currently controls the foreground.
Though this is an extremely rare case on most ma-
chines, it’s irritating. I’ll happily run a follow-up piece
if anyone out there can overcome this obstacle. Write
me at karl@mvps.org with the crack.

Creating a Task List
I’d like to offer my users the ability to switch to

any other running application. To do this, I need to
build a list of all running apps, similar to that offered
on the first tab of Task Manager under NT. What’s
the best way to get such a list?

To provide an accurate list of all running tasks, do
a brute-force cycle through all the top-level win-

dows, checking whether each window meets a list of
criteria. The easiest way to do this: Call the
EnumWindows API, pointing at your filtering rou-
tine. I’ve written the FillTaskListBox routine to ac-
cept a ListBox control as its only parameter. It clears
the list and calls EnumWindows, passing the
AddressOf EnumWindowsProc and the handle to

Q

A

www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ FEBRUARY 1999

the listbox (see Listing 2).
The system calls EnumWindowsProc for each

top-level window. The procedure checks each win-
dow to ensure it’s both visible and has neither parent
nor owner. If the window meets these criteria,
GetWindowText obtains the window caption and
adds it to the list with a quick SendMessage call.
Finally, EnumWindowsProc adds the window’s
handle as ItemData for the NewItem with one last
SendMessage call. The enumeration continues as
long as EnumWindowsProc returns True, or until it
encounters all windows.

If you’d like to list all running processes, rather
than top-level applications, see the Microsoft Knowl-
edge Base article Q192986 for a complete example.
Also, article Q183009 provides still more examples of
several window enumeration APIs.
VBPJ FEBRUARY 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣

Push Your Way to the FrontVB4/32, VB5, VB6
Use Recursive Callbacks
I want to write a routine to clear the Immediate

window from code, but I’m stumped when it comes
to finding its window handle. I thought it would be
a simple matter of calling EnumChildWindows until
I’d drilled down deep enough. But both VB5 and
VB6 toss me a “Compile error: Expected Sub, Func-
tion, or Property” message box, with the
EnumChildWindows call’s AddressOf parameter
highlighted. What’s going on?

It sounds as if you’re trying to pass the address of
the currently executing procedure. If that’s the

case, then yes, you’ve uncovered an oddity in the way
VB processes the AddressOf directive. To avoid this
error, you must fully qualify the procedure name by
prepending the module name.

Q

A

Option Explicit
'
' Required Win32 API Declarations
'
Private Declare Function GetWindowThreadProcessId _

Lib "user32" (ByVal hWnd As Long, lpdwProcessId _
As Long) As Long

Private Declare Function AttachThreadInput Lib _
"user32" (ByVal idAttach As Long, ByVal idAttachTo _
As Long, ByVal fAttach As Long) As Long

Private Declare Function GetForegroundWindow Lib _
"user32" () As Long

Private Declare Function SetForegroundWindow Lib _
"user32" (ByVal hWnd As Long) As Long

Private Declare Function IsIconic Lib "user32" _
(ByVal hWnd As Long) As Long

Private Declare Function ShowWindow Lib "user32" _
(ByVal hWnd As Long, ByVal nCmdShow As Long) As Long

'
' Constants used with APIs
'
Private Const SW_SHOW = 5
Private Const SW_RESTORE = 9

Public Function ForceForegroundWindow(ByVal hWnd _
As Long) As Boolean
Dim ThreadID1 As Long
Dim ThreadID2 As Long
Dim nRet As Long
'
' Nothing to do if already in foreground.
'
If hWnd = GetForegroundWindow() Then

ForceForegroundWindow = True
Else

'

' First need to get the thread responsible for
' the foreground window, then the thread running
' the passed window.
'
ThreadID1 = _

GetWindowThreadProcessId(GetForegroundWindow, _
ByVal 0&)

ThreadID2 = GetWindowThreadProcessId(hWnd, _
ByVal 0&)

'
' By sharing input state, threads share their
' concept of the active window.
'
If ThreadID1 <> ThreadID2 Then

Call AttachThreadInput(ThreadID1, _
ThreadID2, True)

nRet = SetForegroundWindow(hWnd)
Call AttachThreadInput(ThreadID1, _

ThreadID2, False)
Else

nRet = SetForegroundWindow(hWnd)
End If
'
' Restore and repaint
'
If IsIconic(hWnd) Then

Call ShowWindow(hWnd, SW_RESTORE)
Else
Call ShowWindow(hWnd, SW_SHOW)

End If
'
' SetForegroundWindow return accurately reflects
' success.
ForceForegroundWindow = CBool(nRet)

End If
End Function
Listing 1 Under newer Windows versions, Microsoft has disabled the SetForegroundWindow API call in all cases except when the calling
application currently maintains the foreground. This routine forces the issue by attaching itself to the foreground thread, faking out the
operating system. Slimy? You bet! But not as slimy as the reason for writing it in the first place.
95

INTERMEDIATE
ASK THE VB PRO

96

Bringing an app
to the foreground
unbidden is bad
behavior in most
apps.
I’ve written a few routines that success-
fully obtain the Immediate window’s handle,
using a recursive enumeration that drills
down through all the child windows of the
current IDE instance (see Listing 3).

Now for the bad news: Even after you
have this handle, there’s still no way to
clear the window. It doesn’t react to any
standard messages. If, like me, you’d like
to see a Debug.Clear method added to
VB, write vbwish@microsoft.com and tell
them I sent you.

Start at a Higher Level
I’d like to open up common file dialogs

at the Network Neighborhood level, rather

Q

VB5, VB6 Filling a Standard Task List
than lower down, on a local disk or path. Is
this possible?
Sure is. The common dialogs use Ex-
plorer windows, so they’re “receptive”

to some of the same parameters. You can
find the command-line switches for Ex-
plorer in MSDN or on the Web at http://
premium.microsoft.com/msdn/library/
winresource/dnwin95/d1c/s732e.htm.
Here’s the basic syntax:

explorer [/n] [/e][,/root,object][[,/

select],subobject]

The main clue here is the object refer-
ence for the root parameter. Here you
can substitute a class ID (CLSID) for a
folder name. A little registry spelunking

A

Option Explicit
'
' Required Win32 API Declarations
'
Private Declare Function EnumWindows Lib "user32" _

(ByVal lpEnumFunc As Long, ByVal lParam As Long) As Long
Private Declare Function IsWindowVisible Lib "user32" _

(ByVal hWnd As Long) As Long
Private Declare Function GetParent Lib "user32" _

(ByVal hWnd As Long) As Long
Private Declare Function GetWindowLong Lib "user32" _

Alias "GetWindowLongA" (ByVal hWnd As Long, ByVal _
nIndex As Long) As Long

Private Declare Function GetWindowText Lib "user32" _
Alias "GetWindowTextA" (ByVal hWnd As Long, ByVal _
lpString As String, ByVal cch As Long) As Long

Private Declare Function SendMessage Lib "user32" Alias _
"SendMessageA" (ByVal hWnd As Long, ByVal wMsg As _
Long, ByVal wParam As Long, lParam As Any) As Long

'
' Constant used to determine window owner.
'
Private Const GWL_HWNDPARENT = (-8)
'
' Listbox messages
'
Private Const LB_ADDSTRING = &H180
Private Const LB_SETITEMDATA = &H19A

Public Function FillTaskListBox(lst As ListBox) As Long
'
' Clear list, then refill it. Return final count.
'
lst.Clear
Call EnumWindows(AddressOf EnumWindowsProc, lst.hWnd)
FillTaskListBox = lst.ListCount

End Function

Private Function EnumWindowsProc(ByVal hWnd As Long, _
ByVal lParam As Long) As Long
Static WindowText As String
Static nRet As Long
'
' Make sure we meet visibility requirements.
'
If IsWindowVisible(hWnd) Then

'
' It shouldn't have any parent window, either.
'
If GetParent(hWnd) = 0 Then

'
' And, finally, it shouldn't have an owner.
'
If GetWindowLong(hWnd, GWL_HWNDPARENT) = 0 Then

'
' Retrieve windowtext (caption)
'
WindowText = Space$(256)
nRet = GetWindowText(hWnd, WindowText, _

Len(WindowText))
If nRet Then

'
' Clean up window text and add to list.
'
WindowText = Left$(WindowText, nRet)
nRet = SendMessage(lParam, _

LB_ADDSTRING, 0, ByVal WindowText)
Call SendMessage(lParam, _

LB_SETITEMDATA, nRet, ByVal hWnd)
End If

End If
End If

End If
'
' Return True to continue enumeration.
'
EnumWindowsProc = True

End Function
Listing 2 Windows’ Task Manager roughly follows the criteria shown here when offering a list of all running tasks. The FillTaskListBox
routine starts a top-level window enumeration, passing the handle of a listbox, which gets an addition each time an enumerated window
passes through all the filters.
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ FEBRUARY 1999

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency and
serves as a member of the Visual Basic
Programmer’s Journal Technical Review
and Editorial Advisory Boards. Online, he’s
a Microsoft MVP, and a section leader sev-
eral VBPJ online forums. Find more of Karl’s
VB samples at http://www.mvps.org/vb.

About the Author
turns up the required CLSIDs for Net-
work Neighborhood, as well as a few
other interesting ones (see Table 1). To
use these CLSIDs with the common
dialogs, prepend two colons and pass
the CLSIDs to the InitDir property—
or assign them to the lpstrInitialDir
element of the OPENFILENAME struc-
ture if you’re calling the OpenFile API
directly:
VBPJ FEBRUARY 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣

VB5, VB6 Recursively Enumerate All Child

Listing 3 These routines find and return th
each child of the top-level window. At each l
With CommonDialog1

.InitDir = "::{208D2C60-3AEA-1069-" & _

"A2D7-08002B30309D}"

.DialogTitle = "Starting in " & _

"Network Neighborhood..."

.ShowOpen

End With

A tip of the hat to fellow-MVP Brad
Martinez for tossing this idea my way. VBPJ
Download the code for this issue of
VBPJ free from http://www.vbpj.com.

To get the free code for this entire
issue, click on Locator+, the right-
most option on the menu bar at the top
of the VBPJ home page, and type
VBPJ0299 into the box. (You first
need to register, for free, on DevX.)
The free code for this article includes
all code listings, plus demo applets
that exercise each listing.

To get the code for this article only,
available to DevX Premier Club mem-
bers, type VBPJ0299AP into the Lo-
cator+ field.

DOWNLOAD FREE CODE
Table 1 Fun With CLSIDs. You can use these CLSIDs with the common dialogs. It’s
fun to create a new folder in your Start menu and name it “Name.CLSID,” providing nearly
instant access to the Printers and Control Panel settings. Not all classes are useful in all
situations; test carefully whether a given class offers the behavior you seek.

Name ␣ ␣ ␣ ␣ CLSID ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ Works With Dialogs

My Computer {20D04FE0-3AEA-1069-A2D8-08002B30309D} Yes

Network Neighborhood {208D2C60-3AEA-1069-A2D7-08002B30309D} Yes

Recycle Bin {645FF040-5081-101B-9F08-00AA002F954E} Yes

Desktop {00021400-0000-0000-C000-000000000046} No

My Briefcase {85BBD920-42A0-1069-A2E4-08002B30309D} No

Control Panel {21EC2020-3AEA-1069-A2DD-08002B30309D} No

Printers {2227A280-3AEA-1069-A2DE-08002B30309D} No

Dial-Up Networking {992CFFA0-F557-101A-88EC-00DD010CCC48} No
 Windows
Option Explicit

Private Declare Function EnumThreadWindows _
Lib "user32" (ByVal dwThreadId As Long, ByVal lpfn _
As Long, ByVal lParam As Long) As Long

Private Declare Function EnumChildWindows Lib _
"user32" (ByVal hWndParent As Long, ByVal _
lpEnumFunc As Long, ByVal lParam As Long) As Long

Private Declare Function FindWindowEx Lib "user32" _
Alias "FindWindowExA" (ByVal hWnd1 As Long, ByVal _
hWnd2 As Long, ByVal lpsz1 As String, ByVal lpsz2 _
As String) As Long

Private m_hWnd As Long

Public Function hWndDebug() As Long
'
' Initialize search variables, and enumerate this
' thread's top-level windows, returning result.
'
If Not Compiled Then

m_hWnd = 0
Call EnumThreadWindows(App.ThreadID, AddressOf _

EnumWindowProc, 0)
hWndDebug = m_hWnd

End If
End Function

Private Function EnumWindowProc(ByVal hWnd As Long, _
ByVal lParam As Long) As Long
e handle to VB’s Immed
evel, FindWindowEx look
Dim nRet As Long
'
' Check to see if any children are the Immediate
' window.
nRet = FindWindowEx(hWnd, 0, "VbaWindow", "Immediate")
If nRet Then

'
' We found it! Return False to stop enum.
'
m_hWnd = nRet
EnumWindowProc = False

Else
'
' Enumerate each child of this window.
' AddressOf isn't naturally recursive,
' so we need to add the module name.
'
Call EnumChildWindows(hWnd, AddressOf _

MDebugWindow.EnumWindowProc, lParam)
EnumWindowProc = (m_hWnd = 0)
'return True to continue enum.

End If
End Function

Private Function Compiled() As Boolean
On Error Resume Next
Debug.Print 1 \ 0
Compiled = (Err.Number = 0)

End Function
97

iate (Debug) window by recursively calling EnumChildWindows on
s for children that meet the desired criteria.

