
INTERMEDIATE
ASK THE VB PRO

by Karl E. Peterson

Verifying
Internet Access

Ask the VB Pro provides
you with free advice on
programming obstacles,
techniques, and ideas.
Read more answers from
our crack VB pros on the
Web at http://www.
inquiry.com/thevbpro.
You can submit your
questions, tips, or ideas
on the site, or access a
comprehensive database
of previously answered
questions.

ABOUT THIS COLUMN

Click & Retrieve
Source

CODE!
Confirming Internet Connections
My app needs to know whether it has access to

A

Q

WinInet functions provide a more reliable answer.
Unfortunately, WinInet is also ill-documented, and
Microsoft has not published what specific function-
ality ships with each version of Internet Explorer (IE).
A lot of WinInet capability is packed into IE3, but to
unlock it all, you must require IE4—or Win98—to
be installed on your users’ machines. (If it really were
part of the operating system, this library would be
available as part of a service pack, wouldn’t it?)

I’m glad this question is asked occasionally, be-
cause it gives me a chance to go beyond the answer in
a recent  Ask the VB Pro column [VBPJ April 1998].
If I haven’t scared you away yet, let me show you
what’s involved. WinInet provides the InternetGet
ConnectedState function, which quickly returns a
value supposedly telling you whether you’re con-
nected to the Internet. This function also returns a
flags parameter detailing the type of connection that’s
active. Simple. Until you attempt to make sense of
these values, anyway.

A problem that’s come to my attention since the
previous mention of InternetGetConnectedState: It
tells you only the state of the default connectoid—the
dial-up networking connection. If a machine is con-
figured with multiple ISPs, and the nondefault
connectoid is in use, the flags parameter indicates that
the modem is “busy” but you are connected. The
confusion arises when you ask, “Connected to what?”
This function, regardless of its name, does not guar-
antee an Internet connection, because a connectoid
can connect you to virtually anything. The same

the Internet. Is there a simple way to find out?
Someone suggested using the Remote Access Services
(RAS) functions as one possible approach, but those
look incredibly messy.

The RAS functions are convoluted and inappro-
priate for making this determination. The
VBPJ  DECEMBER 1998␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
cautions apply when InternetGetConnectedState tells
you your connection is through either the LAN or a
proxy server.

In fact, the only way to tell if you’re connected to the
Internet is to attempt contact with something “out
there.” InternetGetConnectedState is reliable when it
tells you you’re not connected, so this function is still
useful as a first test and can save time trying to open an
Internet resource when no connection is in place. My
preference is to open the URL of a known reliable Web
site; I do this by iterating through a collection that
contains several highly reliable URLs. When
InternetGetConnectedState hints that I might be con-
nected, I confirm that by opening an Internet session
using InternetOpen, then by attempting to open a
known resource with InternetOpenUrl. If the latter call
succeeds, I know the connection is alive and well.

I’ve wrapped all this logic up into a class module,
CNetConnect (download the code from the free,
Registered Level of The Development Exchange).
I’ve also included a demo that illustrates just how easy
it is to use. The demo is available on the free, Regis-
tered Level of DevX (see the Download Free Code
box for details).

Copy Files to the Clipboard
I’m writing an Explorer-type file system browser,

and would like to offer users the ability to “copy” files
to the clipboard so they can use Paste functions in
Explorer or other apps. How can I do this?

Explorer fills the clipboard with a half-dozen
data formats when you highlight a file and select

Copy. Five of these are custom formats, and are
difficult to use from VB. However, one of the formats,
CF_HDROP, is readily usable—in fact, it’s all you
need to place files on the clipboard. This format, also
known as a “Dropped Filelist,” has a handle you can
use with several drag-and-drop functions to retrieve
the name of each file in the list.

A

Q

95



96

INTERMEDIATE
ASK THE VB PRO

Slinging Files On/Off the ClipboardVB4/32, VB5, VB6
Option Explicit

' Required data structures
Private Type POINTAPI

x As Long
y As Long

End Type

' Clipboard Manager Functions
Private Declare Function EmptyClipboard Lib _

"user32" () As Long
Private Declare Function OpenClipboard Lib _

"user32" (ByVal hWnd As Long) As Long
Private Declare Function CloseClipboard Lib _

"user32" () As Long
Private Declare Function SetClipboardData Lib _

"user32" (ByVal wFormat As Long, ByVal hMem _
As Long) As Long

Private Declare Function GetClipboardData Lib _
"user32" (ByVal wFormat As Long) As Long

Private Declare Function IsClipboardFormatAvailable Lib _
"user32" (ByVal wFormat As Long) As Long

' Other required Win32 APIs
Private Declare Function DragQueryFile Lib _

"shell32.dll" Alias "DragQueryFileA" (ByVal hDrop _
As Long, ByVal UINT As Long, ByVal lpStr As String, _
ByVal ch As Long) As Long

Private Declare Function GlobalAlloc Lib "kernel32" _
(ByVal wFlags As Long, ByVal dwBytes _
As Long) As Long

Private Declare Function GlobalFree Lib "kernel32" _
(ByVal hMem As Long) As Long

Private Declare Function GlobalLock Lib "kernel32" _
(ByVal hMem As Long) As Long

Private Declare Function GlobalUnlock Lib "kernel32" _
(ByVal hMem As Long) As Long

Private Declare Sub CopyMem Lib "kernel32" Alias _
"RtlMoveMemory" (Destination As Any, Source _
As Any, ByVal Length As Long)

' Predefined Clipboard Formats
Private Const CF_HDROP = 15

' Global Memory Flags
Private Const GMEM_MOVEABLE = &H2
Private Const GMEM_ZEROINIT = &H40
Private Const GHND = (GMEM_MOVEABLE Or GMEM_ZEROINIT)

Private Type DROPFILES
pFiles As Long
pt As POINTAPI
fNC As Long
fWide As Long

End Type

Public Function clipCopyFiles(Files() As String) _
As Boolean
Dim data As String
Dim df As DROPFILES
Dim hGlobal As Long
Dim lpGlobal As Long
Dim i As Long

' Open and clear existing crud off clipboard.
If OpenClipboard(0&) Then

Call EmptyClipboard

' Build double-null terminated list of files.
For i = LBound(Files) To UBound(Files)
data = data & Files(i) & vbNullChar
Next i
data = data & vbNullChar

' Allocate and get pointer to global memory,
' then copy file list to it.
hGlobal = GlobalAlloc(GHND, Len(df) + Len(data))
If hGlobal Then

lpGlobal = GlobalLock(hGlobal)

' Build DROPFILES structure in global memory.
df.pFiles = Len(df)
Call CopyMem(ByVal lpGlobal, df, Len(df))
Call CopyMem(ByVal (lpGlobal + Len(df)), _

ByVal data, Len(data))
Call GlobalUnlock(hGlobal)

' Copy data to clipboard, and return success.
If SetClipboardData(CF_HDROP, hGlobal) Then

clipCopyFiles = True
End If

End If

' Clean up
Call CloseClipboard

End If
End Function

Public Function clipPasteFiles(Files() As String) As _
Long
Dim hDrop As Long
Dim nFiles As Long
Dim i As Long
Dim desc As String
Dim filename As String
Dim pt As POINTAPI
Const MAX_PATH As Long = 260

' Ensure desired format is there, and open
' clipboard.
If IsClipboardFormatAvailable(CF_HDROP) Then

If OpenClipboard(0&) Then

' Get handle to Dropped Filelist data, and
' number of files.
hDrop = GetClipboardData(CF_HDROP)
nFiles = DragQueryFile(hDrop, -1&, "", 0)

' Allocate space for return and working
' variables.
ReDim Files(0 To nFiles - 1) As String
filename = Space(MAX_PATH)

' Retrieve each filename in Dropped Filelist.
For i = 0 To nFiles - 1

Call DragQueryFile(hDrop, i, filename, _
Len(filename))

Files(i) = TrimNull(filename)
Next i

' Clean up
Call CloseClipboard

End If

' Assign return value equal to number of
' files dropped.
clipPasteFiles = nFiles

End If
End Function
Listing  1  Use this pair of functions to copy a list of files to the clipboard and paste  it into another application. In reality, the clipboard
contains only a simple list; it’s up to the pasting application to retrieve the contents of the original files.
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ  DECEMBER 1998



VBPJ  DECEMBER 1998␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣

DOWNLOAD FREE CODE

Download the code for this issue of
VBPJ free  from http://www.
vbpj.com.

To get the free code for this entire
issue, type VBPJ1298 into the Loca-
tor+ field at the top right of the VBPJ
home page. (You first need to regis-
ter, for free, on DevX.) The free code
for this article includes all code list-
ings, plus the CNetConnect class
module and Internet connection
demo.

 To get the bonus code for this
article, available to DevX Premier
Club members, type VBPJ1298AP
into the Locator+ field. The bonus
code includes all the free code de-
scribed above, plus a demo showing
how to copy and paste files to/from
the clipboard, and a VB-based clip-
board viewer application.

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency and
serves as a member of the Visual Basic
Programmer’s Journal Technical Review
and Editorial Advisory Boards. Based in
Vancouver, Wash., he’s also an indepen-
dent programming consultant who special-
izes in ActiveX controls and contributes to
various journals. Karl coauthored Visual
Basic 4 How-To, from Waite Group Press.
Online, he’s a Microsoft MVP, and a section
leader several VBPJ online forums. Find
more of Karl’s VB samples at http://
www.mvps.org/vb.

About the Author
The clipCopyFiles routine accepts an
array of file names, which it copies to the
clipboard (see Listing 1). The first task: Open
and empty the clipboard using OpenClip-
board and EmptyClipboard APIs. If this
succeeds—it won’t if another app currently
has the clipboard open—then the file list is
prepared. The HDROP data format requires
a double-null terminated, single-null sepa-
rated list of files. A quick loop builds a string
by appending each file name successively,
with a Chr(0) in between and an extra Chr(0)
at the end.

he CF_HDROPT

At this point, you’re ready to construct a
DROPFILES structure entirely in global
memory. You can’t use a standard VB struc-
ture, because the clipboard retains ownership
of the data after you hand it over. Use
GlobalAlloc to set aside enough space for a
DROPFILES structure plus enough to tack
the constructed file-list string onto the end.
Call GlobalLock to obtain a pointer to this
memory. Assign the structure length to the
first element of a local DROPFILES struc-
ture—the other elements aren’t needed in this
case—to indicate the file list will immediately
follow the structure in memory. Then copy
the structure to the address returned by
GlobalAlloc and the file list to the offset indi-
cated in the last step. Finally, use GlobalUnlock
to release the locked memory, send it to the
clipboard with ClipboardSetData, and call
CloseClipboard to finish up.

format can be
used with several
drag-and-drop
functions to
retrieve the
names of each
file in a list.
You’ll see that the Paste option on
Explorer’s Edit menu is enabled. In addi-
tion, Explorer and other apps have access to
the file list you placed on the clipboard. The
clipPasteFiles routine illustrates decipher-
ing this data by returning an array contain-
ing the file names on the clipboard (see
Listing 1). IsClipboardFormatAvailable
checks for data availability, OpenClipboard
is called, and GetClipboardData retrieves
the HDROP handle. The DragQueryFile
API accepts an HDROP, and returns either
the number of files dropped or the name of
one of the dropped files, depending on the
value of the second parameter. VBPJ
The clipCopyFiles routine
accepts an array of file
names, which it copies
to the clipboard.

The clipPasteFiles routine
deciphers the data, returning an
array containing the file names
on the clipboard.

IsClipboardFormatAvailable
checks for data availability.

GetClipboardData retrieves
the HDROP handle.

The DragQueryFile API accepts
an HDROP, and returns either the
number of files dropped or the
name of one of the dropped files,
depending on the value of the
second parameter.
97


	Code

