
INTERMEDIATE
ASK THE VB PRO

by Karl E. Peterson

VB Can’t Can Do That!

Ask the VB Pro provides
you with free advice on pro-
gramming obstacles, tech-
niques, and ideas. Read
more answers from our
crack VB pros on the Web
at http://www. inquiry.com/
thevbpro. You can submit
your questions, tips, or ideas
on the site, or access a
comprehensive database
of previously answered
questions.

About This Column

Click & Retrieve
Source

CODE!
Always Display Correct Name
When you place a regular TextBox on a form at

design time, the TextBox automatically places the
Name of the control, as well as its unique integer, into
the Text property—Text1 or Text2, for example. I
created an extended-function TextBox control. I would
like to duplicate the naming process, but I can’t seem
to get the full name that VB5 assigns to the control
during the InitProperties event. I get only the Name of
the control, not its unique, VB-assigned integer.

The initial release of VB5 had a problem in this
regard. If not exactly as you describe, it was similar

and perhaps related. If a usercontrol instance was
copied to the clipboard, pasted back onto the form, and
you answered “No” to creating a control array, the
Extender.Name property continued to reflect the origi-
nal control’s Name value rather than the newly as-
signed value. I reported this as a bug in VB5 late in the
beta, and there wasn’t time to address it prior to release,
but it has been fixed in a subsequent service pack. So,
if you haven’t applied SP3 to VB5, it’s well past time.
With this patch, Extender.Name always returns the
correct display name during the InitProperties event.

At other times, you might need to update your
display name and add some techniques to your con-
trols. You can instruct the Caption (or Text) property
to be updated with each user keystroke through the
Procedure Attributes dialog. To access this dialog,
open the code window for your usercontrol, then
select Procedure Attributes from the Tools menu.
Select your Caption property from the Name drop-
down, press the Advanced button to reveal more
options, and select Caption from the Procedure ID
drop-down. After you apply this modification, your
Caption property Let procedure is called each time
the user alters this property at design time, which
allows you to update the display.

In other situations, you might not have a user-
configurable caption. Consider the display of VB’s
intrinsic ListBox at design time. If you don’t pre-
assign the List property, the ListBox uses a single
dummy item to display the control’s Name. I recently
had to replicate this behavior when I wrapped up a
standard ListBox and added DragList capabilities,
allowing the user to rearrange the list contents. You
can download this control for free at http://
www.mvps.org/ccrp.

The answer is in the little known or used

Q

A

VBPJ OCTOBER 1998␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
AmbientChanged event. This is one of those oddball
events that might or might not fire depending on the
environment in which your control is hosted.
AmbientChanged alerts you to changes in the Ambi-
ent object. This object is provided, in varying extents,
by containers to suggest various control behaviors.
To detect the suggested display name for your con-
trol, add this code:

Private Sub _
UserControl_AmbientChanged(_
PropertyName As String)
Select Case PropertyName

Case "DisplayName"
Call UpdateDisplayName

Case Else
Debug.Print PropertyName

End Select
End Sub

Watch for changes to the “DisplayName” prop-
erty, and update your control appropriately. (As an
interesting learning device, send the PropertyName
string to the Immediate window on other calls to this
event.) I chose to update the display from a separate
routine; otherwise, the same code is duplicated in
two other locations. The AmbientChanged event
doesn’t fire (for “DisplayName”) when the control is
first sited, so you have to call UpdateDisplayName
from both InitProperties and ReadProperties as well:

Private Sub UpdateDisplayName()

'
' Set display name into listbox,

' but only do this at design time!
'

On Error GoTo BailOut
If Ambient.UserMode = False Then

List1.List(0) = _
Ambient.DisplayName

End If
BailOut:

End Sub

You could use this logic in many potential con-
trols, not just in list boxes, to display non-caption-
based names at design time. Not all containers expose
all Ambient properties, so it’s always advisable to
employ proper error trapping when querying them.
153

154

INTERMEDIATE
ASK THE VB PRO
Scrollbars Not Painting
Correctly

I’m using the VScrollBar and HScrollBar
intrinsic controls in VB5 under Win95 and
NT. They both work fine, but the scroll
areas above or below the thumb appear
white in NT, not gray as they do in Win95.
How can I fix this so they display properly?

I first submitted a bug on this behavior
during the VB4 beta. Now, two ver-

sions later, VB6 still hasn’t corrected this
seemingly simple problem. But, it’s a prob-
lem easily addressed with a little subclassing.

Windows sends a WM_CTLCOLOR-
SCROLLBAR message to the parent win-
dow of a scrollbar when the control is about
to be drawn. This message allows an appli-
cation to set the background color of the
control by returning the desired brush Win-
dows should use when painting the back-
ground. VB4, VB5, and VB6 all respond
inappropriately to this request from Win-
dows NT by returning the handle of a white
background brush (see Figure 1).

To avoid this incorrect response, sub-
class the form on which you use intrinsic
scrollbar(s), and “eat” the WM_CTLCOL-
ORSCROLLBAR message. For simplicity,
I’ll use the freeware MsgHook control to
illustrate the technique:

Private Const WM_CTLCOLORSCROLLBAR _
= &H137

Private Sub Form_Load()
Msghook.HwndHook = Me.hWnd
Msghook.Message(_

WM_CTLCOLORSCROLLBAR) = True

End Sub

That’s all there is to it. By simply in-
structing MsgHook to intercept this mes-
sage, but not reacting in any fashion what-
soever to the receipt of the message, you
instruct Windows to use the default colors
for these controls. If you want to observe
how VB is responding to the message, you
can do something like this:

Private Sub Msghook_Message(ByVal _

msg As Long, ByVal wp As Long, _
ByVal lp As Long, result _

As Long)

Debug.Print _
Hex(Msghook.InvokeWindowProc(_

msg, wp, lp))

End Sub

Q

A

A

You’ll see that VB is returning a Long
value, presumably a brush handle, under
Windows NT. Interestingly, it appears that
forms running under either Windows 95 or
Windows 98 never receive this message,
thus explaining why the “deviant” behavior
is only observed in NT. MsgHook is a
freeware control, written by VBPJ contrib-
uting editor Zane Thomas, and is widely
available on the Internet (including my site
at http://www.mvps.org/vb).

PIDL to Safearray
I’m trying to use Navigate2 with a

WebBrowser control to navigate to one of
the special folders. According to the Knowl-
edge Base article Q167834, this cannot be
done in VB because there’s no way to repre-
sent a pointer to an ID list (PIDL) in VB. I
assume the article is outdated, as I’ve been
using PIDLs with VB for a pretty long time
without problems. I can’t believe that it can
be this complicated.

Right you are! The referenced KB ar-
ticle states, “Note that because it is not

currently possible to represent a PIDL in
Visual Basic, it is not possible to call the
Navigate2 method from a Visual Basic ap-
plication.” Well, them thar’s fightin’ words
to most VB developers, ain’t they? By the
time you read this column, I suspect
Microsoft will have updated that document
so as not to put VB in such a bad light.

The WebBrowser control is implemented
by shdocvw.dll, a component shipped with
Internet Explorer (IE) 3 and 4. The IE4
version exposes a new Navigate2 method
that accepts a PIDL packed into a
SAFEARRAY of bytes. PIDLs were intro-
duced in Win95 and NT4 as a way of
navigating the shell’s namespace. An item
ID list can be represented by one or more
structures of this composition (the name
SHITEMID is short for Shell Item ID):

typedef struct _SHITEMID {␣
␣ ␣ ␣ // mkid␣
␣ ␣ ␣ USHORT cb;␣ ␣ ␣ ␣ ␣ ␣ _

// size of identifier,

// including cb itself
␣ ␣ ␣ BYTE␣ ␣ abID[1];␣ _

// variable length item identifier
} SHITEMID, * LPSHITEMID;

The only trick is translating this list into a
data structure VB can work with. Conceptu-
ally, the equivalent VB structure would be:

Q

Type SHITEMID

␣ cb As Integer

␣ abID() As Byte

End Type

But what you have is a pointer to mul-
tiple structures like these. The secret is to
walk through the memory pointed to by the
PIDL, examining the length of each list
item, and re-creating the list in a byte array
through a series of memory copies (see List-
ing 1). Because there’s no way to know how
many IDs are in the list, you must enter a
potentially infinite loop, scanning for the
terminating element. Copy the length of the
current element to a size variable, and add
this to a running sum that tracks the overall
length of the list. On each iteration, add the
running sum to the PIDL to obtain the
address of the next structure. The loop ter-
minates when the size element is zero.

When you know the overall size, most of
the work is done. Redimension a byte array
to hold the entire list, in addition to the two
extra bytes representing the terminating zero.
Call CopyMemory (an alias of RtlMoveMem-
ory) one more time to transfer the entire list
into the byte array. Because the
WebBrowser’s Navigate2 method expects a
Variant, the last step is to assign the byte
array into a Variant that is then passed to
Navigate2.

So, when someone, even Microsoft, says
“you can’t do that in VB,” it’s always best to
critically question such a claim. I’d like to
extend a special thanks to Brad Martinez
(http://members.aol.com/btmtz/vb/), fellow
CCRP control author, for sharing the logic
behind this solution. VBPJ
Figure 1 Scrollbars Paint Incorrectly
Under NT. This sample shows how VB
mishandles Windows’ request for a
background color as scrollbars are drawn.
This message appears to occur only under
NT, and not at all under either Windows 95
or 98, although it’s documented for all
three environments. To enforce proper back-
ground painting, hook the WM_CTLCOL-
ORSCROLLBAR message and “eat” it as
it’s sent to your form.
www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ VBPJ OCTOBER 1998

V

VB4/32 VB5 VB6

You can find all the code published in this issue of VBPJ on The Development
Exchange (DevX) at http://www.vbpj.com. For details, please see “Get Extra
Code in DevX’s Premier Club” in Letters to the Editor.

VB Can’t Can Do That!
Locator+ Codes
Listings for the entire issue, plus a sample project showing a correction of VB’s
errant response to the WM_CTLCOLORSCROLLBAR message (free Regis-
tered Level): VBPJ1098

 Listings for this article only, the scrollbar project described above, and a
sample project demonstrating use of the WebBrowser’s Navigate2 method
(subscriber Premier Level): AP1098

CODE ONLINE

Karl E. Peterson is a GIS analyst with a regional transpor-
tation planning agency and serves as a member of the
VBPJ Technical Review and Editorial Advisory Boards.
Based in Vancouver, Wash., he’s also an independent
programming consultant specializing in ActiveX controls,
and contributes to various journals. Karl coauthored Visual
Basic 4 How-To, from Waite Group Press. Online, he’s a
Microsoft MVP, and a section leader of several VBPJ
online forums. In his spare time, he’s an official member of
the Common Controls Replacement Project (CCRP), a
group dedicated to freeware control offerings. Find more
of Karl’s VB samples at http://www.mvps.org/vb.

About the Author

Display Any Special Folder in a WebBrowser Control
Private Declare Function _
SHGetSpecialFolderLocation _
Lib "shell32.dll" (ByVal hWndOwner As Long, _
ByVal nFolder As SpecialShellFolderIDs, pidl _
As Long) As Long

Private Declare Sub CoTaskMemFree Lib _
"ole32.dll" (ByVal pv As Long)

Private Declare Sub CopyMemory Lib "kernel32" _
Alias "RtlMoveMemory" (pDest As Any, pSource _
As Any, ByVal dwLength As Long)

Private Const NOERROR = 0

Public Enum SpecialShellFolderIDs
CSIDL_DESKTOP = &H0
CSIDL_INTERNET = &H1
CSIDL_PROGRAMS = &H2
CSIDL_CONTROLS = &H3
CSIDL_PRINTERS = &H4
CSIDL_PERSONAL = &H5
CSIDL_FAVORITES = &H6
CSIDL_STARTUP = &H7
CSIDL_RECENT = &H8
CSIDL_SENDTO = &H9
CSIDL_BITBUCKET = &HA
CSIDL_STARTMENU = &HB
CSIDL_DESKTOPDIRECTORY = &H10
CSIDL_DRIVES = &H11
CSIDL_NETWORK = &H12
CSIDL_NETHOOD = &H13
CSIDL_FONTS = &H14
CSIDL_TEMPLATES = &H15
CSIDL_COMMON_STARTMENU = &H16
CSIDL_COMMON_PROGRAMS = &H17
CSIDL_COMMON_STARTUP = &H18
CSIDL_COMMON_DESKTOPDIRECTORY = &H19
CSIDL_APPDATA = &H1A
CSIDL_PRINTHOOD = &H1B
CSIDL_ALTSTARTUP = &H1D ' // DBCS
CSIDL_COMMON_ALTSTARTUP = &H1E ' // DBCS
CSIDL_COMMON_FAVORITES = &H1F
CSIDL_INTERNET_CACHE = &H20
CSIDL_COOKIES = &H21
CSIDL_HISTORY = &H22

End Enum
BPJ OCTOBER 1998␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
Public Function SHNav2SpecialFolder(ByVal _
nFolder As SpecialShellFolderIDs, wb _
As WebBrowser) As Boolean
Dim pidl As Long
Dim idSize As Integer
Dim idlSum As Integer
Dim Buffer() As Byte
Dim SafeArray As Variant
'
' Get the pointer to the folder's item ID list
' from its specified folder ID.
'
If SHGetSpecialFolderLocation(0&, nFolder, pidl) = _
NOERROR Then
If pidl Then
'
' Determine size of entire ID list.
'
Do
Call CopyMemory(idSize, ByVal (pidl + _
idlSum), 2)

idlSum = idlSum + idSize
If idSize = 0 Then Exit Do

Loop
'
' Create buffer with 2 extra bytes for the
' zero terminator, and copy ID list into it.
'
ReDim Buffer(0 To idlSum + 1)
CopyMemory Buffer(0), ByVal pidl, idlSum + 2
'
' Pass SAFEARRAY to WebBrowser.
'
SafeArray = Buffer
wb.Navigate2 SafeArray
'
' Free the memory the shell allocated for the
' ID list.
'
Call CoTaskMemFree(pidl)
SHNav2SpecialFolder = True

End If
End If

End Function
Listing 1 Adding this routine and these declares to a standard code module enables your app to request WebBrowser controls to display
any special folder by ID. Simply pass one of the SpecialShellFolderIDs constants, along with a reference to a WebBrowser control, and
the SHNav2SpecialFolder function handles the dirty work.
155

	Code

