
110 AUGUST 1998 Visual Basic Programmer’s

ASK THE VB PRO

I N T E R M E D I A T E

Sounds Like Trouble

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency
and serves as a member of the Visual Basic
Programmer’s Journal Technical Review
and Editorial Advisory Boards. Based in
Vancouver, Washington, he’s also an inde-
pendent programming consultant special-
izing in ActiveX controls. In addition to
contributing to various journals, Karl coau-
thored Visual Basic 4 How-To from Waite
Group Press. Online, he’s a Microsoft MVP,
and a section leader in several VBPJ online
forums. Find more of Karl’s VB samples at
http://www.mvps.org/vb.

Ask the VB Pro provides you with free
advice on programming obstacles, tech-
niques, and ideas. Read more answers from
our crack VB pros on the Web at http://
www.inquiry.com/thevbpro. You can sub-
mit your questions, tips, or ideas on the site,
or access a comprehensive database of
previously answered questions.

b y K a r l E . P e t e r s o n

Click & Retrieve
Source

CODE!

PLAYING SYSTEM SOUNDS
I want my app to play the wave (WAV) file that has been assigned to a
particular Windows sound, such as Asterisk or Exclamation. Do I make an API

call to return the file for a particular sound?

A
Yes and no. All system sounds are defined in the registry, where you can
look them up. Utilities and applications—such as Themes and Office—
can assign sounds; these definitions are also stored in the same registry

location. You can find them all under the key, HKEY_CURRENT_USER\AppEvents\
Schemes\Apps. You can take one API-intensive approach of enumerating this key and
its subkeys, searching for the sound of interest.

If you’re mainly interested in using “standard” sounds, you can use a shortcut. By
calling the PlaySound API, with the proper flags and a registered sound alias, you can
avoid registry spelunking. Here’s a brief example:

Private Declare Function PlaySound Lib "winmm.dll" Alias "PlaySoundA" (ByVal _
lpszName As String, ByVal hModule As Long, ByVal dwFlags As Long) As Long

Private Const SND_ASYNC = &H1
Private Const SND_ALIAS = &H10000
Call PlaySound("SystemAsterisk", 0, SND_ASYNC Or SND_ALIAS)

This code sequence plays the sound associated with the Asterisk, which has been
more recently referred to as an informational message—the sound played when you
call MsgBox with the vbInformation flag. Similarly, you could use “SystemExclamation”
or any of the other defined aliases. How do you determine the correct alias strings? The
easiest way is simply to open your registry editor and browse around a bit. If your
application requests an alias that isn’t registered or doesn’t currently have a sound
associated with it, the default sound plays.

PLAYING MIDI FILES
I’d like to play a given MIDI file when my application starts up and also in
response to certain user actions. I’d prefer not to ship an extra control for

something that should be fairly easy to implement with code, but I can’t seem to get
any of the examples I’ve seen to work. Do you have a simple way to play such files?

A
I can certainly understand your frustration. The Multimedia Control Inter-
face (MCI) is one of the most confusing and ill-documented, and the related
Knowledge Base articles leave pieces unexplained. I’ve written a couple

short subroutines you can use to start and stop MIDI tunes (see Listing 1). The basic
idea is to “open” and “play” a file, using the mciSendString API. Assigning an alias to the
file when it’s first opened allows you to individually identify this tune in future calls to
mciSendString. The alias is important, for example, because it gives you a method to
stop the tune if necessary. Only one MIDI file can play at any given time, and unlike WAV
files, attempting to start a new one doesn’t stop the previous one. To stop a MIDI file,
make two more calls to mciSendString to “stop” and “close” the specified alias.

EXPOSING IMPLEMENTED METHODS
When using Implements with an abstract class, all the properties and
methods of the abstract class must be in the class doing the implementing.

Do they all need to be public?

A The quick answer is no. In fact, you generally would not want all
the implemented methods to be public. Objects with an interface reference
should have full access to the implemented methods, but objects unaware of
 Journal http://www.devx.com

ASK THE VB PRO

I N T E R M E D I A T E
the secondary interface shouldn’t. A more
typical design might be to explicitly ex-
pose as a standard member of your class
the methods you also want to expose pub-
licly. For example, say you want to imple-
ment the abstract class Foo:

Option Explicit
Public Sub Bar()
End Sub

In the class implementing this inter-
face, enter code like this:

Implements Foo
Private Sub Foo_Bar()

' whatever
End Sub
Public Sub Bar()
http://www.devx.com
Call Foo_Bar
End Sub

This design hides the implemented
interface from objects that are unaware
of it, yet still provides identical function-
ality for methods that need to be univer-
sally available. In the end, it’s just a mat-
ter of style, and entirely up to you.

USING AN OCX’S SECONDARY
INTERFACE
It seems an ActiveX control can-

not usefully implement an abstract inter-
face class. If you want to reuse code, it
seems you need to design a fully func-
tional dependent object of the control
rather than define an abstract class. In-
stead, I’d like to reuse an interface. I plan
Visual Bas
to write an entire family of 10 or so con-
trols, all of which implement the proper-
ties and methods of one or more abstract
interfaces, in a polymorphic fashion. Can
I do this with controls?

A
Yes, you can do it, but the route
is foggy. If you take the classic ap-
proach, you generate a type-mis-

match error. Using the example interface,
Foo, and a control named Fubar1 that Imple-
ments that interface, this code won’t work:

Dim iFoo as Foo
Set iFoo = Fubar1

Although this syntax works fine if Fubar1
is a class, it generates a type-mismatch
error when Fubar1 is an ActiveX control.
Because controls can expose a default
property and it’s unlikely that this prop-
erty resolves to an object also implement-
ing the secondary interface, you’re nearly
assured of an error in this situation. A
relatively unknown property of all ActiveX
controls solves this problem. Alter your
code and you’re in business:

Dim iFoo as Foo
Set iFoo = Fubar1.Object

The Object property returns a refer-
ence to the actual control object, not the
default property exposed by that control.
This is another reason why support for
default properties is a bad idea, even if
they do save a few keystrokes.

DEALING WITH LOCALIZATION
PROBLEMS
My application uses LoadRes-

String to load strings from a resource
Add MIDI to Your App. The Multimedia Control Interface (MCI) is one of the
most confusing there is. However, these two simple routines let you play MIDI

files from within your app. Just be sure to stop any running MIDI tune before attempting
to start a new one. Also note that MIDI tunes do not stop automatically when your
application terminates, so this is something you should check on exit.

LISTING 1

Private Declare Function mciSendString Lib "winmm.dll" Alias "mciSendStringA" _
(ByVal lpstrCommand As String, ByVal lpstrReturnString As String, ByVal _
uReturnLength As Long, ByVal hwndCallback As Long) As Long

Public Function PlayMidiFile(ByVal FileName As String, Optional ByVal _
Alias As String = "tune") As Boolean
Dim nRet As Long
Call StopMidiFile(Alias)
If mciSendString("open " & FileName & " alias " & Alias, vbNullString, _

0, 0) = 0 Then
nRet = mciSendString("play " & Alias & " from 0", vbNullString, 0, 0)
PlayMidiFile = (nRet = 0)

End If
End Function
Public Sub StopMidiFile(Optional ByVal Alias As String = "tune")
Call mciSendString("stop " & Alias, vbNullString, 0, 0)
Call mciSendString("close " & Alias, vbNullString, 0, 0)

End Sub
' Win32 Locale functions
Private Declare Function GetSystemDefaultLangID Lib _
"kernel32" () As Integer

Private Declare Function GetLocaleInfo Lib "kernel32" _
Alias "GetLocaleInfoA" (ByVal Locale As Long, ByVal _
LCType As Long, ByVal lpLCData As String, ByVal _
cchData As Long) As Long

' Localized name of language
Private Const LOCALE_SLANGUAGE = &H2
Public Function SystemLanguage() As String
Dim LCID As Long
Dim nRet As Long
Dim buf As String
' Cache language identifier.
LCID = GetSystemDefaultLangID
' Determine buffer requirement for language.
nRet = GetLocaleInfo(LCID, LOCALE_SLANGUAGE, buf, 0)
buf = Space$(nRet)
' Obtain language description.
Call GetLocaleInfo(LCID, LOCALE_SLANGUAGE, buf, _

Len(buf))
SystemLanguage = TrimNull(buf)

End Function
Public Function TrimNull(ByVal StrIn As String) As
String
Dim nul As Long
' Truncate input string at first null.
' If no nulls, perform ordinary Trim.
nul = InStr(StrIn, vbNullChar)
Select Case nul

Case Is > 1
TrimNull = Left(StrIn, nul - 1)
Case 1

TrimNull = ""
Case 0

TrimNull = Trim(StrIn)
End Select

End Function
Determine the Default System Language. Use this code to determine which language your application should use for its
user-interface elements. The code returned by GetSystemDefaultLangID would be the best value to test for resource

determination. However, once you have that language ID, you can determine many other values for the system—such as the currency
symbol, thousands and decimal separators, or date formats—by simply calling GetLocaleInfo with the appropriate constant.

LISTING 2
ic Programmer’s Journal AUGUST 1998 111

Private Declare Function FormatMessage Lib "kernel32" _
Alias "FormatMessageA" (ByVal dwFlags As Long, _
lpSource As Any, ByVal dwMessageId As Long, ByVal _
dwLanguageId As Long, ByVal lpBuffer As String, _
ByVal nSize As Long, Arguments As Long) As Long

Private Const FORMAT_MESSAGE_FROM_SYSTEM As Long = _
&H1000

Private Function ApiErrorText(ByVal ErrNum As Long) As _
String
Dim msg As String
Dim nRet As Long

msg = Space$(1024)
nRet = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, _

ByVal 0&, ErrNum, 0&, msg, Len(msg), ByVal 0&)
If nRet Then

ApiErrorText = Left$(msg, nRet)
Else

ApiErrorText = "Error (" & ErrNum & ") not defined."
End If

End Function

Translate Error Code to Plain Text. Calling
FormatMessage with the appropriate constant and an API

error code returns a plain text description of the indicated error. This
utility, suitable for your desktop, lists all available API error messages,
and optionally copies this routine to the Windows clipboard for
inclusion in your applications. You can download this from the Tools
page of my Web site at http://www.mvps.org/vb.

LISTING 3

112 AUGUST 1998 Visual Basic Programmer’s Journal

ASK THE VB PRO

I N T E R M E D I A T E
file. The resource file is in English and Norwegian. When I set the
regional settings to English, I expect the application to use the
English part of the resource file. And when I switch the computer
to Norwegian, I expect it to use the Norwegian part of the resource
file. I always reboot the computer when I switch languages, and
the application is then recompiled to an EXE file. Yet the resource
strings used never vary. Why?

A
The simple answer is that there’s nothing automagic
about it. My hunch is you’ve used the VB Resource
Editor, a tool found on Microsoft’s Web site, to build your

resource file. Unfortunately, the help file for this tool implies that
multiple string tables are the answer to your problem. What isn’t
mentioned is that this approach works only in Windows NT, and fails
miserably under both Windows 95 and 98.

Instead, you need to either supply your resources in multiple
DLLs or build them using offsets for each language. If you want your
application to use English resources, you need to specify that.
Similarly, if you want it to use Norwegian resources, specify those. So
the question really becomes, which language should you use? A pair
of API calls can answer this for you (see Listing 2).

Calling GetSystemDefaultLangID returns an identifier for the
current language. As a side note, this is one of the few Win32 APIs
you should declare as returning an Integer. If you declare the
function to return a Long, the upper two bytes in the return value
are meaningless and could be just about anything. You then need
to manually split out the lower two bytes to get the data you’re
after. In this case, it’s simpler to let VB split the lower two bytes
for you by declaring the return As Integer.

http://www.devx.com

Once you obtain the language identi-
fier, pass that to GetLocaleInfo twice. This
API returns results within a string buffer.
If the buffer you supply isn’t long enough,
the return is the length of the required
buffer. Calling GetLocaleInfo with zero for
the buffer length supplies you with the
required information to properly size your
buffer. The second call to GetLocaleInfo
returns a localized textual description of
the current system language.

The text description might go farther
than you want, and you would probably
be better off selecting resources based
on the return value of GetSystem-
DefaultLangID. But it’s interesting just
how much more information is available
once you have that ID! For more details,
see the SDK docs on GetLocaleInfo.

LOOK UP THE ERROR CODE!
I’m trying to register an ActiveX
DLL using regsvr32, but I must

be doing something wrong. At the com-
mand line, I type regsvr32 mydllname.dll,
but I get this message:

LoadLibrary ("mydllname.dll") _

http://www.devx.com
failed GetLastError 0x00000485

The DLL is out there—I also tried
unregistering an earlier one using /u, but
that doesn’t work either—and regsvr32.exe
is in the c:\windows\system directory.
What should I try next?

A
When presented with an error
code, the first thing you should
do is look it up! In this case, the

returned code, &H485, translates to “One
of the library files needed to run this
application cannot be found.” Given only
this to work with, my hunch is you didn’t
do a proper install. One or more depen-
dencies cannot be found. If you simply
copied the DLL to this machine, my ad-
vice is to build a setup program and use
that. If you used a setup program and still
missed dependencies, more detective
work is called for. Sometimes, just open-
ing a DLL in QuickView—in Explorer, right-
click on the DLL and select Quick View—
reveals missing files. Otherwise, the most
thorough tool available is the Dependency
Walker (Depends.exe), which ships with
the Platform SDK.

Visual Basi
Code Online
You can find all the code published in this
issue of VBPJ on The Development Exchange
(DevX) at http://www.vbpj.com. For details,
please see “Get Extra Code in DevX’s Premier
Club” in Letters to the Editor.

Sounds Like Trouble
Locator+ Codes
Listings for the entire issue (free Registered
Level): VBPJ0898

Listings for this article only, plus com-
plete source to a demo app that retrieves the
names and plays all registered system sounds
in addition to the MIDI examples shown in
Listing 1 (subscriber Premier Level): AP0898

For future reference, you can easily
translate most API error codes into mean-
ingful descriptions by calling the
FormatMessage API, passing the desired
error code (see Listing 3). Never call the
GetLastError API when you suspect an
API error. Instead, query the LastDllError
property of VB’s Err object. Some folks
memorize some of the more common er-
ror codes, but nothing beats having the
actual description handy!

c Programmer’s Journal AUGUST 1998 113

ASK THE VB PRO

I N T E R M E D I A T E

	Code

