
96 JUNE 1998 Visual Basic Programmer’s Jo

ASK THE VB PRO

I N T E R M E D I A T E

List Your Higher
Windows

Karl E. Peterson is an independent pro-
gramming consultant who specializes in
ActiveX controls by night and spends his
days as a GIS analyst with a regional trans-
portation planning agency. Karl coauthored
Visual Basic 4 How-To from Waite Group
Press. Online, he’s a Microsoft MVP and a
section leader in several VBPJ online fo-
rums. Find more of Karl’s VB samples at
http://www.mvps.org/vb.

Phil Weber is an independent consult-
ant specializing in Visual Basic and Web
site development. He is a Microsoft
Certified Solution Developer and Product
Specialist. Find more of Phil’s VB tips on his
Web site: http://www.teleport.com/~pweber.

Ask the VB Pro provides you with free
advice on programming obstacles, tech-
niques, and ideas. Read more answers from
our crack VB pros on the Web at http://
www.inquiry.com/thevbpro. You can sub-
mit your questions, tips, and ideas on the
site, or access a comprehensive database
of previously answered questions.

b y K a r l E . P e t e r s o n a n d P h i l W e b e r

Click & Retrieve
Source

CODE!

ENUMERATING WINDOWS
I need to list the top-level windows running in the system. I found that
EnumWindows API enumerates all top-level windows, but I don’t know how

to use it. Is it possible to use this API in VB?

Yes, with the introduction of VB5’s AddressOf operator, it’s quite possible to
use the EnumWindows API as well as its sibling EnumChildWindows, which
enumerates all the children of any given window. In fact, using EnumWindows

is the preferred way to cycle the window list. Previously, VB programmers could only
set up a loop using the GetWindow API. (See Programming Techniques, VBPJ Septem-
ber 1995, for an example.)

Although GetWindow worked well, the window list could change during the loop as
windows are created or destroyed. Microsoft documentation implies that the window list
doesn’t change during an EnumWindows callback sequence, which makes EnumWindows
safer. EnumWindows works by passing the handle to each top-level window into a callback
procedure within your application. The system makes the callback until it has enumerated
all windows or until the callback procedure returns False.

My implementation scheme is to wrap all relevant functions within a single
standard code module, often making it reusable if my search criteria are generic. Start
by adding a few items to the Declarations section. At minimum, you need to add a
declare for EnumWindows and a module-level variable to track the sought-after
window handle:

Private Declare Function EnumWindows Lib "user32" (ByVal lpEnumFunc As Long, _
ByVal lParam As Long) As Long

Private m_hWnd As Long

You’ll probably include other variables, such as a string holding the desired window
text to guide the callback procedure in its filtering, as well as whatever other API
declarations are required to test each enumerated window to see if it meets your criteria:

Private Declare Function GetWindowText Lib "user32" Alias "GetWindowTextA" _
(ByVal hWnd As Long, ByVal lpString As String, ByVal cch As Long) As Long

Private m_AppTitle As String

Next, define the “public” interface to your enumeration routine. Write a function
that accepts the parameters by which you filter the enumerated windows. For
example, let’s say you want to find a window that starts with a given string. Your public
routine could look like this:

Public Function FindAllWindows() As Long
m_hWnd = 0
m_AppTitle = Search
Call EnumWindows(AddressOf EnumWindowsProc, 0&)
MyFindWindow = m_hWnd

End Function

Note that before calling EnumWindows, you first set the module-level filter vari-
ables—initializing the window handle (m_hWnd) to zero, and storing the search string
so you can read it from the callback. Finally, write the callback procedure. You can

A

urnal http://www.windx.com

ASK THE VB PRO

I N T E R M E D I A T E
name this procedure anything, but the
example uses the common name
EnumWindowsProc. This procedure
does the real work. The system calls
EnumWindowsProc once for each top-
level window. You can stop the enumera-
tion at any time by returning False:

Private Function EnumWindowsProc _
(ByVal hWnd As Long, _
ByVal lParam As Long) As Long
Static WindowText As String
WindowText = Space$(256)
If GetWindowText(hWnd, WindowText, _

Len(WindowText)) Then
If Instr(WindowText, m_AppTitle) _

= 1 Then
m_hWnd = hWnd

End If
End If
EnumWindowsProc = (m_hWnd = 0)

End Function

Here the callback procedure calls
GetWindowText against each passed win-
dow handle. It then checks whether this
window text starts with the search string.
Your filter might be much more elaborate,
but this example demonstrates the point.
If the procedure finds the desired win-
dow, it uses the module-level variable to
store its handle. It sets the return value
for EnumWindowsProc to the logical re-
sult (m_hWnd = 0), which means that the
callback procedure returns True until it
finds the window it’s looking for, at which
point m_hWnd has a value other than
zero and the logical test results in False.
http://www.windx.com
But I’m afraid I went further than you
asked. If you simply want to build a list of
all the top-level windows, rather than a
single m_hWnd variable, declare an array
of them. With each callback into
EnumWindowsProc, stash the new handle
in the array:

Private m_hWnd() As Long
Private m_Windows As Long
Public Function MyFindWindow _

(Search As String) As Long
m_Windows = 0
Redim m_hWnd(1 to 100) As Long
Call EnumWindows(AddressOf _

EnumWindowsProc, 0&)
' Do something with the array

End Function
Private Function EnumWindowsProc _

(ByVal hWnd As Long, _
ByVal lParam As Long) As Long
If (m_Windows + 1) > UBound(m_hWnd) _

Then
ReDim Preserve m_hWnd _

(1 To m_Windows + 100)
End If
m_Windows = m_Windows + 1
m_hWnd(m_Windows) = hWnd
EnumWindowsProc = True

End Function

In both these examples, execution
doesn’t resume after the EnumWindows
call until all top-level windows have been
enumerated or—as in the first example—
the filtering criteria have been met. On
occasion, you can pass a value into each
EnumWindowsProc by specifying an lParam
Visual
in the EnumWindows call. This value can be
a flag that instructs EnumWindowsProc how
to deal with the incoming window handles,
or just about anything you’d find handy,
potentially eliminating one module-level
variable. —K.E.P.

SOUNDS COMPLICATED
I’m trying to get the Media Con-
trol Interface (MCI) control to

play a WAV file without user intervention.
I can’t find a way to get it to play without
clicking on the Play button on the control.
I’ve tried calling the PlayClick event pro-
cedure, but it doesn’t work. How do I get
this to work?

Bail on the control altogether.
Seriously. Playing a WAV file in-
volves a grand total of one API

call. You can wrap it up in a nice, simple
function quite cleanly (see Listing 1). The
PlaySound function requires three param-
eters—the file name, an instance handle
that isn’t used except with resource files,
and a flag that tells it you’re requesting a
file to be played. Optionally, you can play
the sound asynchronously by tossing in a
SND_ASYNC on the flag parameter, or you
can let the sound finish before execution
resumes by simply using SND_FILENAME.

But wait, there’s more! With a few more
lines of code, you can also play any of the
predefined system sounds. You used to be
able to find these in Win.ini, but they are
now located in the registry. Take a look at
\HKEY_CURRENT_USER\AppEvents\Event-
Labels to get a sense of the possibilities.

A

Private Declare Function PlaySound Lib "winmm.dll" _
Alias "PlaySoundA" (ByVal lpszName As String, _
ByVal hModule As Long, ByVal dwFlags As Long) As Long

Private Const SND_ASYNC = &H1
Private Const SND_ALIAS = &H10000
Private Const SND_FILENAME = &H20000
Public Enum SystemSounds
ssSystemAsterisk = 0
ssSystemExclamation = 1
ssSystemExit = 2
ssSystemHand = 3
ssSystemQuestion = 4
ssSystemStart = 5

End Enum
Public Sub PlaySoundFile(ByVal FileName As String, _
Optional ByVal Wait As Boolean = False)
If Wait Then

Call PlaySound(FileName, 0&, SND_FILENAME)
Else

Call PlaySound(FileName, 0&, SND_ASYNC Or _
SND_FILENAME)

End If
End Sub
Public Sub PlaySoundSystem(ByVal WhichSound As _
SystemSounds)
Dim SoundAlias As String
Select Case WhichSound

Case ssSystemAsterisk
SoundAlias = "SystemAsterisk"

Case ssSystemExclamation
SoundAlias = "SystemExclamation"

Case ssSystemExit
SoundAlias = "SystemExit"

Case ssSystemHand
SoundAlias = "SystemHand"

Case ssSystemQuestion
SoundAlias = "SystemQuestion"

Case ssSystemStart
SoundAlias = "SystemStart"

Case Else 'play default sound
SoundAlias = "Gobbledygook"

End Select
Call PlaySound(SoundAlias, 0, SND_ASYNC Or _

SND_ALIAS)
End Sub
Name That Tune. You must wonder why anyone bothered to write a control around playing WAV files, because playing them
is so simple. These two routines demonstrate how to play any WAV file by name, or any system-defined sound by alias. You

can extend the Select Case block considerably by scouring the registry for more system sound names. To use these routines in VB4, replace
the Enum with hard-coded constants.

LISTING 1
 Basic Programmer’s Journal JUNE 1998 97

ASK THE VB PRO

I N T E R M E D I A T E
Realize that not all sounds are likely to be on all machines, but
most of the common ones are. To play a system sound, pass the
name found in the registry, and the flag SND_ALIAS. Toss in a
SND_ASYNC if it suits you.

If you happen to pass an alias that isn’t registered, the system
default sound plays. This is the same sound VB’s Beep state-
ment causes. —K.E.P.
Public Function PageSetup(ByVal hWndOwner As Long, _
rtMargin As RECT) As Boolean
Dim iNull As Integer
Dim lpDM As Long
Dim lResult As Long
Dim sDevName As String
Dim prn As Printer
Dim dm As DEVMODE
Dim psd As PSDTYPE
' Initialize Page Setup dialog with
' values for system default printer
With psd

.lStructSize = Len(psd)

.flags = PSD_RETURNDEFAULT
End With
lResult = PageSetupDlg(psd)
If lResult Then

' Display Page Setup dialog
With psd

.hWndOwner = hWndOwner

.flags = PSD_INTHOUSANDTHSOFINCHES
End With
lResult = PageSetupDlg(psd)
If lResult Then

' Copy API's DevMode structure into VB variable
lpDM = GlobalLock(psd.hDevMode)
Call RtlMoveMemory(dm, ByVal lpDM, Len(dm))
lpDM = GlobalUnlock(psd.hDevMode)

' Get device name from DevMode
sDevName = dm.dmDeviceName
iNull = InStr(sDevName, vbNullChar)
If iNull Then

sDevName = Left$(sDevName, iNull - 1)
End If
' Search Printers collection for
' matching device name
For Each prn In Printers

If prn.DeviceName = sDevName Then
Set Printer = prn
Exit For

End If
Next
' Set Printer's properties to match
' user's selections in dialog
With Printer

.PaperSize = dm.dmPaperSize

.PaperBin = dm.dmDefaultSource

.Orientation = dm.dmOrientation
End With
' Copy desired margins into rtMargin
rtMargin = psd.rtMargin

End If
End If
PageSetup = lResult

End Function

Use Common Page Setup Dialog. Windows 95 and NT
provide a common dialog for setting page properties,

such as margins, orientation, and paper size. This function displays
the dialog and sets the properties of VB’s Printer object according to
the user’s selections. Due to space limitations, this listing omits the
API function declarations and constant definitions. The complete
code is available on the DevX Web site (http://www.windx.com);
see the Code Online box at the end of this column for details.

LISTING 2
98 JUNE 1998 VBPJ http://www.windx.com

ASK THE VB PRO

I N T E R M E D I A T E
USE STANDARD PAGE SETUP
The WordPad utility in Windows95 and NT includes a cool

P age Setup dialog that allows the user to set margins, paper
size, orientation, and other properties. Is there any way I can use this
dialog in my VB programs?

You betcha! You can call the PageSetupDlg API function
to display the dialog. That’s the easy part; the challenge is

to get the user’s choices after the user closes the dialog.
The PAGESETUPDLG structure that you pass to the function
includes a field named hDevMode. This is a handle to a DEVMODE
structure that contains the user’s choices. To access this structure,
pass the hDevMode handle to the GlobalLock function to get a
pointer. Then call the RtlMoveMemory function to copy the data
from this address into a VB variable. Finally, call GlobalUnlock to
unlock the memory containing the original DEVMODE structure.

I’ve written a handy PageSetup function to handle all these
details for you (see Listing 2). The function accepts the hWnd of
whatever window you want to own the Page Setup dialog—you
may pass zero in this parameter if you don’t want the dialog to
“belong” to any particular window—and a RECT structure that
returns the user’s margin settings in thousandths of an inch. The
PageSetup function displays the Page Setup dialog, and if the user
clicks on the OK button, the function retrieves the user’s choices
and applies them to VB’s Printer object. All you need to do then
is set the Printer’s CurrentX and CurrentY properties to match
the margins in the RECT structure and print away. —P.W.

CORRECTION
The April 1998 Ask the VB Pro column incorrectly implied that if you
use Microsoft’s Axdist.exe to install Wininet.dll along with your
application, you can use the InternetAutodial and InternetAutodial-
Hangup functions to initiate and terminate an Internet connection
programmatically.

Unfortunately, Axdist.exe installs the Internet Explorer 3.0 ver-
sion of Wininet.dll, but the InternetAutodial and InternetAuto-
dialHangup functions—as well as the InternetGetConnectedState
function discussed in the May 1998 Ask the VB Pro column—were
not introduced until IE4. This means an app cannot use these
functions unless the user has IE4, Windows 98, or NT5 installed on
his or her machine.

If you don’t want your app to require IE4, you can use the
Remote Access Services (RAS) API to programmatically connect
to and disconnect from the Internet. You can call the RAS func-
tions directly from VB, as demonstrated in the Microsoft Knowl-
edge Base (http://support.microsoft.com/download/support/
mslfiles/vb32ras.exe), or use a third-party control, such as Mabry
Software’s RAS Dialer Control (ftp://ftp.mabry.com/ras.exe), to
simplify the process.

A

Code Online
You can find all the code published in this issue of VBPJ on The Develop-
ment Exchange (DevX) at http://www.windx.com. For details, please see
“Get Extra Code in DevX’s Premier Club” in Letters to the Editor.

List Your Higher Windows
Locator+ Codes
Listings for the entire issue, plus the complete code modules for the
PageSetup and PlaySound functions (free Registered Level): VBPJ0698

 Listings for this article only, plus the code listed above, as well as a
complete sample app demonstrating custom FindWindowPartial and
AppActivePartial routines used for finding and activating a window
whose captions start with or contain a given string, with a reusable
FindPart.bas module (subscriber Premier Level): AP0698

99 JUNE 1998 VBPJ http://www.windx.com

	Code

