
92 APRIL 1998 Visual Basic Programmer’s Jo

ASK THE VB PRO

I N T E R M E D I A T E

Getting Out Of a Dither

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency
and serves as a member of the Visual Basic
Programmer’s Journal Technical Review
and Editorial Advisory Boards. Based in
Vancouver, Washington, he’s also an inde-
pendent programming consultant special-
izing in ActiveX controls. In addition to
contributing to various journals, Karl coau-
thored Visual Basic 4 How-To, from Waite
Group Press. Online, he’s a Microsoft MVP,
and a section leader in both VBPJ online
forums. Find more of Karl’s VB samples at
http://www.mvps.org/vb.

Phil Weber is an independent consult-
ant specializing in Visual Basic and Web
site development. He is a Microsoft Certi-
fied Solution Developer and Product Spe-
cialist. Find more of Phil’s VB tips on his
Web site: http://www.teleport.com/
~pweber.

Ask the VB Pro provides you with free
advice on programming obstacles, tech-
niques, and ideas. Read more answers from
our crack VB pros on the Web at http://
www.inquiry.com/thevbpro. You can sub-
mit your questions, tips, and ideas on the
site, or access a comprehensive database
of previously answered questions.

b y K a r l E . P e t e r s o n a n d P h i l W e b e r

Click & Retrieve
Source

CODE!

256-COLOR OUTPUT SPOILED
Although I can get custom palettes in 256-color mode fine by setting a
form’sPaletteMode property to vbPaletteModeUseZOrder, the vbPalette-

ModeCustom palette mode seems to be broken. When I try to use colors I know are in
the custom palette, VB still dithers my output.

A VB5 introduced some interesting new ways to work with palettes. But even
so, Windows maintains its intrinsic behavior. The problem is that by default,
in 256-color mode, Windows’ Graphic Device Interface (GDI) dithers all

colors with a pattern composed of the eight main system colors (see Figure 1 and
Listing 1). Work around the dithering by passing color references that have been
altered to have special meaning to GDI. Two options provide the true, nondithered
rendering of the desired colors.

Typically, a red-green-blue (RGB) color reference uses only three of the four
available bytes to specify the red, green, and blue components of a requested color.
Define a palette-relative RGB value as a normal RGB value, but set the high-order byte
to 2. This usage causes Windows to return the palette entry that most closely matches
the requested color and that is always a pure, nondithered color. To specify such a
value, simply Or your RGB value with &H2000000:

Me.BackColor = &H2000000 Or RGB(255, 133, 0)

Another option is to use a specific palette index. Setting the high-order byte to 1 and
the low-order byte to the desired index causes Windows to return a pure, nondithered
color representing that specific palette entry. This value—represented in hex—would
appear as &H10000nn, where nn is the desired palette index.
u

What a Difference Not Dithering Makes! Windows dithers the color
patches on the left using a pattern created from the eight primary system

colors. On the right is an example of how richly colored native Visual Basic graphics
can be when you avoid dithering. You can create this output by using the code shown
in Listing 1.

FIGURE 1
rnal http://www.windx.com

ASK THE VB PRO

I N T E R M E D I A T E
WHERE’S THE OBJECT?
Given an object reference, how
can I determine whether the

object—an ActiveX EXE, for example—is
running remotely or locally? If it’s running
remotely, how can I find out what ma-
chine it’s on?

A
If you know either the ProgID or
CLSID of the object, you can get
this information using an ob-

scure method. The VB5 help file alludes
to the solution, but leaves out one critical
piece of information—that the first thing
you must do is set a project reference to
http://www.windx.com
the Remote Automation Registry library,
RacReg (racreg32.dll).

RacReg exposes RegClass, a class that
offers a handful of methods used to read and
write registry entries related to remote
ActiveX components and control Remote
Automation. Create a new instance of the
RegClass class, and pass either the ProgID
or CLSID of your object to the
RegClass.GetAutoServerSettings method
(see Listing 2).

If your component is running remotely,
GetAutoServerSettings returns a Variant
that contains an array of values about the
component. Test the first element for True
Visual
or False to determine whether the compo-
nent is registered remotely. If it is, the sec-
ond element reveals the name of the server
where the component is registered. The
remaining two elements tell you the RPC
protocol and authentication level in use.

RETURNING MOUSE
COORDINATES
Many of the controls I write with

VB5 are owner-drawn. That is, rather than
put other controls within my UserControl,
I fully create my own control using a slew
of API calls to do all the drawing. I prefer to
use Pixels as the ScaleMode for the
UserControl, but I’d like mouse coordi-
nates always to be returned in the appro-
priate scale—generally Twips, but it could
be any scale. How can I raise a MouseMove
event using the same coordinate system
as my control’s container?

A
The UserControl object exposes
two methods made to order for
this problem—ScaleX and

ScaleY. These methods convert a speci-
fied number of units from one unit of
measure to another. In the UserControl’s
MouseMove event, use these methods to
convert Pixels into whatever units the
control’s owner is using:

Private Sub UserControl_MouseMove _
(Button As Integer, _
Shift As Integer, x As Single, _
y As Single)
RaiseEvent MouseMove(Button, _
Private Declare Function GetPaletteEntries Lib "gdi32" _
(ByVal hPalette As Long, ByVal wStartIndex As Long, _
ByVal wNumEntries As Long, lpPaletteEntries As _
PALETTEENTRY) As Long

Private Type PALETTEENTRY
peRed As Byte
peGreen As Byte
peBlue As Byte
peFlags As Byte

End Type

Private m_pe(0 To 255) As PALETTEENTRY

Private Sub Form_Click()
Me.Refresh

End Sub

Private Sub Form_Load()
With Me

.PaletteMode = vbPaletteModeCustom
Set .Palette = LoadPicture("c:\vb5\bright.dib")
Call GetPaletteEntries(.Palette.hPal, 0, 256, m_pe(0))

End With
End Sub

Private Sub Form_Paint()
Dim x As Long, y As Long
Dim clr As Long
Me.Scale (0, 0)-(32, 16)
For y = 0 To 15

For x = 0 To 15
With m_pe(y * 16 + x)

clr = RGB(.peRed, .peGreen, .peBlue)
End With
Me.Line (x, y)-(x + 1, y + 1), clr, BF
Me.Line (x + 16, y)-(x + 17, y + 1), _

&H2000000 Or clr, BF
Next x

Next y
End Sub
Demand Nondithered Colors. By default, Windows likes to dither nonstandard colors. Setting the high-order byte of a color
reference to 2 lets you override this behavior. This method of color specification works in all versions of VB and Windows,

and is extremely useful when calling GDI functions directly. Because the Palette and PaletteMode properties were introduced in VB5,
prior versions require establishing palettes directly through the API. This code produces the output shown in Figure 1.

LISTING 1
Private Sub CheckServerLocation()
Dim oRegClass As RegClass
Dim vRC As Variant

Set oRegClass = New RegClass
vRC = _

oRegClass.GetAutoServerSettings("kpINI.CIniFile")
If Not (IsEmpty(vRC)) Then
If vRC(1) Then

MsgBox "kpINI is registered remotely on a server named: " _
& vRC(2)

Else
MsgBox "kpINI is registered locally."

End If
End If

End Sub

Determine Whether a Component is Local or Remote. This code, with a
minor modification to correct an error in the help file, shows how to obtain

the name of the server that an ActiveX component is registered on. Note that to run this,
you must first establish a project reference to the RacReg library.

LISTING 2
Basic Programmer’s Journal APRIL 1998 93

ASK THE VB PRO

I N T E R M E D I A T E
Shift, ScaleX(x, vbPixels, _
Extender.Parent.ScaleMode), _
ScaleY(y, vbPixels, _
Extender.Parent.ScaleMode))

End Sub

Note the use here of the Extender ob-
ject. To be on the safe side, it’s always
wise to incorporate error trapping when
94 APRIL 1998 Visual Basic Programmer’s Jo
using this object, as each potential con-
trol host is likely to expose a different set
of properties for this object.

CONNECTING TO THE INTERNET
How can I make my app connect
to the Internet automatically, the

way Internet Explorer does when you en-
ter a URL and you’re not online?
urnal
A
Apps running under 32-bit
versions of Windows can use
the InternetAutodial and

InternetAutodialHangup functions in
wininet.dll:

Private Const _
INTERNET_AUTODIAL_FORCE_UNATTENDED _
As Long = 2

Private Declare Function _
InternetAutodial Lib _
"wininet.dll" (ByVal dwFlags _
As Long, ByVal dwReserved _
As Long) As Long

Private Declare Function _
InternetAutodialHangup Lib _
"wininet.dll" _
(ByVal dwReserved As Long) _
As Long

' To connect (returns non-zero
' if successful):

lResult = InternetAutodial(_
INTERNET_AUTODIAL_FORCE_ _
UNATTENDED, 0&)

' To hang up
lResult = InternetAutodialHangup(0&)

Early releases of Windows 95 did not
include wininet.dll; it first shipped with
Internet Explorer 3.0. If you use it in
an application that you intend to distrib-
ute to others, you should include
wininet.dll in your setup. To do so legally,
you must use one of the redistributable
files Microsoft provides for this purpose.
VB5 includes such a file (axdist.exe) in
the \VB\SetupKit\Kitfil32\Sys32 direc-
tory on the VB5 CD. VB4 users can
download the redistributable IE3 files
from the ActiveX SDK, at http://sup-
port.microsoft.com/download/support/
mslfiles/axredist.exe.
http://www.windx.com

Code Online
You can find all the code published in this issue
of VBPJ on The Development Exchange (DevX)
at http://www.windx.com. For details, please
see “Get Extra Code in DevX’s Premier Club” in
Letters to the Editor.

Getting Out of a Dither
Locator+ Codes
Listings for the entire issue, plus a project file
demonstrating use of custom palettes in VB5
and the main form used in the palette demon-
stration (free Registered Level): VBPJ0498
Listings for this article only, plus the files
described above (subscriber Premier Level):
AP0498

	Code

