
http://www.windx.com

ASK THE VB PRO

I N T E R M E D I A T E

Spool, Shell, and Hook
b y K a r l E . P e t e r s o n a n d P h i l W e b e r

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency.
Based in Vancouver, Washington, he’s also
an independent programming consultant spe-
cializing in ActiveX controls and contributes
to various journals. Online, he’s a Microsoft
MVP and a section leader in both VBPJ online
forums. Find more of Karl’s samples and tips
on the Web at http://www.mvps.org/vb.

Phil Weber is an independent consultant
specializing in Visual Basic and Web site
development. He is a Microsoft Certified
Solution Developer and Product Specialist.
Find more of Phil’s VB tips on his Web site at
http://www.teleport.com/~pweber.

Ask the VB Pro provides you with free
advice on programming obstacles, techniques,
and ideas. Read more answers from our
crack VB pros on the Web at http://
www.inquiry.com/thevbpro. You can submit
your questions, tips, or ideas on the site, or
access a comprehensive database of previ-
ously answered questions.

Click & Retrieve
Source

CODE!

SENDING PRINT JOBS DIRECTLY TO SPOOLER
I need to send print jobs as preformatted disk images directly to Windows’
print spooler, bypassing both VB’s Printer object and the printer driver

entirely. My app generates and stores PostScript output, but I’d like to offer users the
opportunity to spool any job already created. How can I output directly to a printer
under Win32 without shelling and issuing a DOS copy command?
—Anonymous, received by e-mail

A Microsoft’s Knowledge Base contains an article (Q119113) that offers three
methods to send data or a file directly to printers, bypassing the printer
driver. Unfortunately, one method doesn’t work with all printers, another

doesn’t work under Windows NT, and the third doesn’t work under Windows 95 or NT.
We’ll show you a series of Win32 API calls that, when used together, lets you print
directly under any version, with any printer (see Listing 1). Although this might look
like a lot of API calls for what should be a simple procedure, it’s a logical approach.

To call the SpoolFile routine, simply pass the names of the file to print and which
printer to spool to. Optionally, include an AppName variable to help identify the source
of the print job if viewed from the Windows print queue. The printer name parameter
accepts the same strings returned by the DeviceName property of VB’s Printer object.
A sample app demonstrating the spooling of any disk-based print file to any installed
printer is available on the free, Registered Level of The Development Exchange (see the
Code Online box at the end of the column for details).

Your app must make three API calls to prepare the printer to accept direct output.
OpenPrinter tells Windows which printer you want to print to, and it returns a printer
handle to use in upcoming calls. StartDocPrinter passes a name to display in the print
queue viewer, and it specifies that you send raw data directly to the printer. Finally,
StartPagePrinter informs the spooler that a “page” is about to be sent. Your data can
actually contain multiple pages, so this call is simply a formality that prepares the
spooler to accept data.

Now you can call WritePrinter with whatever data you need to send. Call
WritePrinter as many times as needed to finish the job. In the sample, a loop reads
16K blocks of data from the file and passes them to WritePrinter. The loop must not
read past the end of the file because it will spool random garbage. To prevent that,
adjust the buffer size for the last pass if the file isn’t an even multiple of 16K bytes.

Shut down the spooling process by reversing the startup. Finish the job with successive
calls to EndPagePrinter, EndDocPrinter, and ClosePrinter, and signal the spooler to begin
downloading data to the printer. Always keep in mind that by taking this route, you assume
all responsibility of the printer driver. Your output must conform precisely to the language
used by the printer being spooled to.

WHAT RETURNS FROM A 32-BIT VB SHELL?
I’m trying to determine the handle of the startup window in a 32-bit VB4 app that
another VB4 app is executing using the Shell command. I have read numerous

resources on doing this, and I am now completely confused between IDs and handles, and
between processes, threads, instances, and tasks.

The 16-bit environment was simpler because it always returned an instance ID, and you
could find the corresponding window handle with that Instance ID by looping through all top-
level windows using the GetWindow API and the GetWindowWord API with the
GWW_INSTANCE parameter. However, VB4/32 introduces concepts such as threads and
processes, making it much more complex.
Visual Basic Programmer’s Journal FEBRUARY 1998 97

ASK THE VB PRO

I N T E R M E D I A T E
What exactly does the 32-bit VB Shell return—an ID or a handle?
If it’s an ID, is it for a process, a thread, or a task? If it’s a handle, is
it for a process or an instance? Is there a definitive code segment
I could use to get a window handle from a shelled app in 32-bit VB?
I tried the 16-bit technique and, of course, it doesn’t work.
—Mark Cohen, Winnipeg, Manitoba, Canada

A As you’ve discovered, Win32 ain’t Kansas anymore! 32-bit
versions of Visual Basic return a Process ID from the Shell
function. You can still use a routine much like the one you

used in Win16, but you need to call the GetWindowThreadProcessID
API while looping through the top-level windows in Win32.

Start by shelling the desired application. Then, depending on
whether you’re coding in VB4 or VB5, you can take two different
approaches. To use the approach that works in both VB4 and
VB5, begin by calling FindWindow, passing NULL as both the
class name and window title (see Listing 2). This fairly unknown
trick obtains the handle of the first window following the desk-
top in the window list. Then enter a loop, checking each window
against your criteria. In this case, calling GetWindowThreadProcessID
98 FEBRUARY 1998 Visual Basic Programmer’s Journal
returns the Process ID for each window, and compares that value
to what Shell returned. Although it might not always be neces-
sary, I toss in a test to ensure that each considered window is
parentless. Visual Basic has been known to use some bizarre
parent-child-owner relationships in the windows it creates.

If you’re coding in VB5, you might want to acquaint yourself with
the EnumWindows API. Because it requires a function pointer to
call back into, this API was previously off limits to VB programmers.
However, Microsoft says that calling EnumWindows is preferable
to a GetWindow loop, because you’re “guaranteed” that the win-
dow list doesn’t change while iterating. I’ve presented the VB4
approach here for maximum portability, but I highly recommend
using EnumWindows if you’re coding in VB5 exclusively (see Keith
Pleas’s “Drilling Down on VB 5.0,” in the May 1997 issue of VBPJ).

Due to space limitations, I omitted the API and constant
declarations from the code shown in Listing 2. To obtain a
complete listing, download a demo applet that shows four differ-
ent Win32 Shell techniques from the free, Registered Level of
DevX. One technique is the routine presented here, while the
other three are new twists on the old “shell and wait” problem.
Private Declare Function OpenPrinter Lib _
"winspool.drv" Alias "OpenPrinterA" (ByVal _
pPrinterName As String, phPrn As Long, pDefault As _
Any) As Long

Private Declare Function StartDocPrinter Lib _
"winspool.drv" Alias "StartDocPrinterA" (ByVal hPrn _
As Long, ByVal Level As Long, pDocInfo As _
DOC_INFO_1) As Long

Private Declare Function StartPagePrinter Lib _
"winspool.drv" (ByVal hPrn As Long) As Long

Private Declare Function WritePrinter Lib _
"winspool.drv" (ByVal hPrn As Long, pBuf As Any, _
ByVal cdBuf As Long, pcWritten As Long) As Long

Private Declare Function EndPagePrinter Lib _
"winspool.drv" (ByVal hPrn As Long) As Long

Private Declare Function EndDocPrinter Lib _
"winspool.drv" (ByVal hPrn As Long) As Long

Private Declare Function ClosePrinter Lib _
"winspool.drv" (ByVal hPrn As Long) As Long

Private Type DOC_INFO_1
pDocName As String
pOutputFile As String
pDatatype As String

End Type

Public Sub SpoolFile(sFile As String, PrnName As _
String, Optional AppName As String = "")
Dim hPrn As Long
Dim Buffer() As Byte
Dim hFile As Integer
Dim Written As Long
Dim di As DOC_INFO_1
Dim i As Long
Const BufSize As Long = &H4000

' Extract filename from passed spec, and build job
' name. Fill remainder of DOC_INFO_1 structure.
If InStr(sFile, "\") Then

For i = Len(sFile) To 1 Step -1
If Mid(sFile, i, 1) = "\" Then Exit For
di.pDocName = Mid(sFile, i, 1) & di.pDocName

Next i
Else
di.pDocName = sFile

End If
If Len(AppName) Then

di.pDocName = AppName & ": " & di.pDocName
End If
di.pOutputFile = vbNullString
di.pDatatype = "RAW"

' Open printer for output to obtain handle.
' Set it up to begin recieving raw data.

Call OpenPrinter(PrnName, hPrn, vbNullString)
Call StartDocPrinter(hPrn, 1, di)
Call StartPagePrinter(hPrn)

' Open file and pump it to the printer.

hFile = FreeFile
Open sFile For Binary Access Read As hFile

' Read in 16K buffers and spool.
ReDim Buffer(1 To BufSize) As Byte
For i = 1 To LOF(hFile) \ BufSize

Get #hFile, , Buffer
Call WritePrinter(hPrn, Buffer(1), _

BufSize, Written)
Next i
' Get last chunk of file if it doesn't
' fit evenly into a 16K buffer.

If LOF(hFile) Mod BufSize Then
ReDim Buffer(1 To (LOF(hFile) Mod _

BufSize)) As Byte
Get #hFile, , Buffer
Call WritePrinter(hPrn, Buffer(1), _

UBound(Buffer), Written)
End If

Close #hFile

' Shut down spooling process.
Call EndPagePrinter(hPrn)
Call EndDocPrinter(hPrn)
Call ClosePrinter(hPrn)

End Sub
Spool Files and Data Directly to a Printer. Adding these declares and code to a standard module in your 32-bit VB app
gives it the ability to spool any disk-based file directly to a printer. You can use the same technique to send any sort of data

directly, by simply altering what you pass with the WritePrinter calls. Be aware that by using this technique, you assume all the
responsibility of a printer driver, in that the data must be formatted precisely for whatever printer you’re sending to.

LISTING 1
http://www.windx.com

ASK THE VB PRO

I N T E R M E D I A T E
RESIZING A COMBO DROP-DOWN
Is there any way to specify how many items are visible in
the list portion of a drop-down combo box? VB seems to

display either eight items or the actual number of items, whichever
is less. In Microsoft Access, combo boxes have a ListRows
property that allows you to set the maximum number of visible
items, but I can’t find a corresponding property in VB.
—Robert Stockdale, received by e-mail

A
Unfortunately, VB offers no simple way to change the
height or width of a combo box’s drop-down list. You
could use a third-party control that offers this feature,

but what fun is that? As with most challenges in programming,
there is a way to do what you want; it’s just a question of how
dirty you want to get your hands.

Combo boxes consist of up to three separate windows: the
combo box itself, an edit control, and a list box. Combo boxes of Style
2, vbComboDropdownList, don’t have an associated edit control,
because they don’t allow editing. Users must select an item from the
list. If you could get the window handle of the list box portion, you
could easily resize it with a call to the MoveWindow or SetWindowPos
API. But the handle returned by a drop-down combo’s hWnd prop-
erty is that of the combo box itself; the list box is a different window.
http://www.windx.com
“Fine,” I hear you saying, “I’ll just use the GetWindow API to find the
first child window of the combo box whose class is ComboLBox.”
Think again: the drop-down list is a child of the desktop, not of the
combo box. This relationship is necessary for the list to be able to
extend outside the application window. Otherwise, the list box
would be clipped at the border of its parent window. No sure-fire way
exists to use the FindWindow or GetWindow API to locate the list box
associated with a specific combo box.

But all is not lost: it turns out that when Windows sends
certain messages to the combo box, it passes the handle of the
list box portion as one of the parameters. So if you subclass the
combo box and intercept those messages, you can manipulate
the drop-down list as you wish. VB5’s AddressOf function
allows you to subclass without using a third-party control. For
more information, see Jonathan Wood’s COMponent Builder
column, “Create a Subclassing Control” [VBPJ May 1997]. You
need such a control if you’re using an earlier version of VB; if
you don’t already have one, you can download Zane Thomas’s
MsgHook control from this Web site for free: http://
www.teleport.com/~pweber.

In 32-bit programs, you must hook the WM_CTLCOLORLISTBOX
message (download Listing 3 from DevX; see the Code Online box
for details). When Windows sends that message, it passes the list
box’s hWnd as the last parameter (lParam). Armed with the elusive
window handle, you can get the height of a single item, calculate the
height necessary to display the desired number of items, and resize
the drop-down list.

Use a similar, though slightly less straightforward, approach
in 16-bit programs (download Listing 4 from DevX; see the Code
Online box for details). Windows sends a single message
(WM_CTLCOLOR) to all the constituents of a combo box, passing
a special value in the high word of lParam to indicate which type
of window this message is for. First you must check the upper 16
bits of lParam to make sure they contain the value
CTLCOLOR_LISTBOX. If so, get the list box’s hWnd from the lower
16 bits of lParam, and proceed as indicated.

YOUR APP MUST MAKE THREE

API CALLS TO PREPARE THE PRINTER

TO ACCEPT DIRECT OUTPUT.
Code Online
You can find all the code published in this issue of VBPJ on The
Development Exchange (DevX) at http://www.windx.com. For de-
tails, please see “Get Extra Code in DevX’s Premier Club” in Letters
to the Editor.

Spool, Shell, and Hook
Locator+ Codes
Listings for the entire issue, plus a demo app that submits files directly
to the print spooler under Windows 95 or NT, and another demo app
with four different shell techniques under Win32 (free Registered
Level): VBPJ0298
Listings for this article only, plus the files described above (subscriber
Premier Level): AP0298
Use the ProcessID to Find Shelled Window. Obtaining
the main window handle of a shelled app in Win32 is

more involved than it ever was in Win16, but the basic idea is the
same. Shell returns a Process ID, which can be compared with the
return value from GetWindowThreadProcessId while looping
through a list of top-level windows.

LISTING 2

Public Function hWndShell(ByVal JobToDo As String, _
Optional ExecMode) As Long
Dim ProcessID As Long
Dim PID As Long
Dim hProcess As Long
Dim hWndJob As Long

' Shells a new process and returns the hWnd
' of its main window.
If IsMissing(ExecMode) Then

ExecMode = vbMinimizedNoFocus
Else

If ExecMode < vbHide Or ExecMode > _
vbMinimizedNoFocus Then
ExecMode = vbMinimizedNoFocus

End If
End If

On Error Resume Next
ProcessID = Shell(JobToDo, CLng(ExecMode))
If Err Then

hWndShell = 0
Exit Function

End If
On Error GoTo 0

hWndJob = FindWindow(vbNullString, vbNullString)
Do While hWndJob <> 0

If GetParent(hWndJob) = 0 Then
Call GetWindowThreadProcessId(hWndJob, PID)
If PID = ProcessID Then

hWndShell = hWndJob
Exit Do

End If
End If
hWndJob = GetWindow(hWndJob, GW_HWNDNEXT)

Loop
End Function
Visual Basic Programmer’s Journal FEBRUARY 1998 99

	Code

